Journal Home > Volume 17 , Issue 4

Medium-entropy oxides (MEOs) with broad compositional tunability and entropy-driven structural stability, are receiving booming attention as a promising candidate for oxygen evolution reaction (OER) electrocatalysts. Meanwhile, ultrathin two-dimensional (2D) nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure. However, it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems. In this work, an ultrathin 2D MEO (MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method. Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure, this 2D MEO (MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm−2 and an impressive stability for 120 h continuous operation with only 6.9% decay. Especially, the extremely high mass activity (5584.3 A·g−1) was three orders of magnitude higher than benchmark RuO2 (3.4 A·g−1) at the same overpotential of 117 mV. This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction

Show Author's information Guangyuan Yan( )Tianlu WangBiwei ZhaoWenjing GaoTong WuLiming Ou
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Medium-entropy oxides (MEOs) with broad compositional tunability and entropy-driven structural stability, are receiving booming attention as a promising candidate for oxygen evolution reaction (OER) electrocatalysts. Meanwhile, ultrathin two-dimensional (2D) nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure. However, it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems. In this work, an ultrathin 2D MEO (MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method. Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure, this 2D MEO (MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm−2 and an impressive stability for 120 h continuous operation with only 6.9% decay. Especially, the extremely high mass activity (5584.3 A·g−1) was three orders of magnitude higher than benchmark RuO2 (3.4 A·g−1) at the same overpotential of 117 mV. This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs.

Keywords: electrocatalysis, oxygen evolution reaction, two-dimensional nanomaterials, ionic layer epitaxy, medium-entropy oxide

References(41)

[1]

Teitsworth, T. S.; Hill, D. J.; Litvin, S. R.; Ritchie, E. T.; Park, J. S.; Custer, J. P. Jr.; Taggart, A. D.; Bottum, S. R.; Morley, S. E.; Kim, S. et al. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614, 270–274.

[2]

Liu, Y. D.; Sakthivel, T.; Hu, F.; Tian, Y. H.; Wu, D. S.; Ang, E. H.; Liu, H.; Guo, S. W.; Peng, S. J.; Dai, Z. F. Enhancing the d/p-band center proximity with amorphous–crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy Mater. 2023, 13, 2203797.

[3]

Wei, L. T.; Du, M. Y.; Zhao, R.; Lv, F.; Li, L. B.; Zhang, L.; Zhou, D.; Su, J. Z. High-valence Mo doping for highly promoted water oxidation of NiFe (oxy)hydroxide. J. Mater. Chem. A 2022, 10, 23790–23798.

[4]

Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.

[5]

Righi, G.; Plescher, J.; Schmidt, F. P.; Campen, R. K.; Fabris, S.; Knop-Gericke, A.; Schlögl, R.; Jones, T. E.; Teschne, D.; Piccinin, S. On the origin of multihole oxygen evolution in haematite photoanodes. Nat. Catal. 2022, 5, 888–899.

[6]

Chen, Z. L.; Yang, H. Y.; Mebs, S.; Dau, H.; Driess, M.; Wang, Z. W.; Kang, Z. H.; Menezes, P. W. Reviving oxygen evolution electrocatalysis of bulk La-Ni intermetallics via gaseous hydrogen engineering. Adv. Mater. 2023, 35, 2208337.

[7]

Chen, S. Y.; Zhang, S. S.; Guo, L.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Yang, G. D.; Zou, J. J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation. Nat. Commun. 2023, 14, 4127.

[8]

Liu, X. Y.; Lu, H. L.; Zhu, S. L.; Cui, Z. D.; Li, Z. Y.; Wu, S. L.; Xu, W. C.; Liang, Y. Q.; Long, G. K.; Jiang, H. Alloying-triggered phase engineering of NiFe system via laser-assisted Al incorporation for full water splitting. Angew. Chem., Int. Ed. 2023, 62, e202300800.

[9]

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 2021, 6, 1054–1066.

[10]

Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z. et al. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

[11]

Wu, H.; Lu, Q.; Li, Y. J.; Wang, J. J.; Li, Y. B.; Jiang, R.; Zhang, J. F.; Zheng, X. R.; Han, X. P.; Zhao, N. Q. et al. Rapid Joule-heating synthesis for manufacturing high-entropy oxides as efficient electrocatalysts. Nano Lett. 2022, 22, 6492–6500.

[12]

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

[13]

Pei, Y.; Chen, Q.; Wang, M. Y.; Zhang, P. J.; Ren, Q. Y.; Qin, J. K.; Xiao, P. H.; Song, L.; Chen, Y.; Yin, W. et al. A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nat. Commun. 2022, 13, 6158.

[14]
Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res., in press, DOI: 10.1007/s12274-023-6215-8.
DOI
[15]

Wu, L.; Shen, X. P.; Ji, Z. Y.; Yuan, J. R.; Yang, S. K.; Zhu, G. X.; Chen, L. Z.; Kong, L. R.; Zhou, H. B. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2208170.

[16]

Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

[17]

Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

[18]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[19]

Liu, B. S.; Du, J. L.; Yu, H. H.; Hong, M. Y.; Kang, Z.; Zhang, Z.; Zhang, Y. The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides. Nano Res. 2021, 14, 1734–1751.

[20]

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

[21]

Ou, Y.; Kang, Z.; Liao, Q. L.; Gao, S. H.; Zhang, Z.; Zhang, Y. Point defect induced intervalley scattering for the enhancement of interlayer electron transport in bilayer MoS2 homojunctions. Nanoscale 2020, 12, 9859–9865.

[22]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[23]

Zhao, Y. H.; Wang, Y. Z.; Dong, Y. T.; Carlos, C.; Li, J.; Zhang, Z. Y.; Li, T.; Shao, Y.; Yan, S.; Gu, L. et al. Quasi-two-dimensional earth-abundant bimetallic electrocatalysts for oxygen evolution reactions. ACS Energy Lett. 2021, 6, 3367–3375.

[24]

Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Dong, Y. T.; Wang, J. Y.; Carlos, C.; Zhang, P.; Cao, Z. Q.; Mao, Y. C.; Wang, X. D. Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 2020, 12, 49.

[25]

Tao, L.; Sun, M. Z.; Zhou, Y.; Luo, M. C.; Lv, F.; Li, M. G.; Zhang, Q. H.; Gu, L.; Huang, B. L.; Guo, S. J. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 2022, 144, 10582–10590.

[26]

Zhang, Z. Y.; Carlos, C.; Wang, Y. Z.; Dong, Y. T.; Yin, X.; German, L.; Berg, K. J.; Bu, W.; Wang, X. D. Nucleation kinetics and structure evolution of quasi-two-dimensional ZnO at the air–water interface: An in situ time-resolved grazing incidence X-ray scattering study. Nano Lett. 2022, 22, 3040–3046.

[27]

Yin, X.; Wang, Y. Z.; Chang, T. H.; Zhang, P.; Li, J.; Xue, P. P.; Long, Y.; Shohet, J. L.; Voyles, P. M.; Ma, Z. Q. et al. Memristive behavior enabled by amorphous–crystalline 2D oxide heterostructure. Adv. Mater. 2020, 32, 2000801.

[28]

Wang, Y. Z.; Shi, Y. Q.; Zhang, Z. Y.; Carlos, C.; Zhang, C. Y.; Bhawnani, K.; Li, J.; Wang, J. Y.; Voyles, P. M.; Szlufarska, I. et al. Bioinspired synthesis of quasi-two-dimensional monocrystalline oxides. Chem. Mater. 2019, 31, 9040–9048.

[29]

Wang, F.; Seo, J. H.; Luo, G. F.; Starr, M. B.; Li, Z. D.; Geng, D. L.; Yin, X.; Wang, S. Y.; Fraser, D. G.; Morgan, D. et al. Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 2016, 7, 10444.

[30]

Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Li, J.; Carlos, C.; German, L. N.; Zhang, C. Y.; Wang, J. Y.; Voyles, P. M.; Wang, X. D. Enhanced ferromagnetism from organic-cerium oxide hybrid ultrathin nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 44601–44608.

[31]

Koebel, M.; Strutz, E. O. Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: Thermochemical and practical aspects. Ind. Eng. Chem. Res. 2003, 42, 2093–2100.

[32]

Yan, G. Y.; Wu, T.; Xing, S. M.; Chen, F.; Zhao, B. W.; Gao, W. J. Ultrathin Ce-doped La2O3 nanofilm electrocatalysts for efficient oxygen evolution reactions. Nanotechnology 2022, 33, 245405.

[33]

Zhang, H. H.; Yang, D.; Ma, T. Y.; Lin, H.; Jia, B. H. Flash-induced ultrafast production of graphene/MnO with extraordinary supercapacitance. Small Methods 2021, 5, 2100225.

[34]

Liao, Q. Y.; Li, N.; Cui, H.; Wang, C. X. Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 13715–13720.

[35]

Miao, K. H.; Jiang, W. D.; Chen, Z. Q.; Luo, Y.; Xiang, D.; Wang, C. H.; Kang, X. W. Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range. Adv. Mater., in press, DOI: 10.1002/adma.202308490.

[36]

Wu, M. J.; Zhang, G. X.; Tong, H.; Liu, X. H.; Du, L.; Chen, N.; Wang, J.; Sun, T. X.; Regier, T.; Sun, S. H. Cobalt(II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 2021, 79, 105409.

[37]

Peck, M. A.; Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490.

[38]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[39]

Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; De Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

[40]

Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

[41]

Zhang, X., Yan, F.; Ma, X. Z.; Zhu, C. L.; Wang, Y.; Xie, Y.; Chou, S. L.; Huang, Y. J.; Chen, Y. J. Regulation of morphology and electronic structure of FeCoNi layered double hydroxides for highly active and stable water oxidization catalysts. Adv. Energy Mater. 2021, 11, 2102141.

File
12274_2024_6421_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 October 2023
Revised: 13 December 2023
Accepted: 15 December 2023
Published: 01 February 2024
Issue date: April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 2021JBM019).

Return