Journal Home > Volume 17 , Issue 6

The chlorine evolution reaction (CER) is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis. Currently, the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions. Here, we grow TiO2 and RuO2 on MXene@carbon cloth (CC) through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal. A self-supported electrode (RuTiO2/MXene@CC) with strong binding at the electrocatalyst–support interface and weak adhesion at electrocatalyst–bubble interface is constructed. The RuTiO2/MXene@CC can reduce the electron density of RuO2 by regulating the electron redistribution at the heterogeneous interface, thus enhancing the adsorption of Cl. RuTiO2/MXene@CC could achieve a high current density of 1000 mA·cm−2 at a small overpotential of 220 mV, superior to commercial dimensionally stable anodes (DSA). This study provides a new strategy for constructing efficient CER catalysts at high current density.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

RuO2/TiO2/MXene with multi-heterojunctions coating on carbon cloth for high-activity chlorine evolution reaction at large current densities

Show Author's information Yuhao Duan1Liuxu Wei1Chenyu Cai1,2Junbao Mi1Fuyuan Cao1,2Jiaze Chen1,2Xiaolong Li1,2Xiujiang Pang1Bin Li1,2( )Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

The chlorine evolution reaction (CER) is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis. Currently, the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions. Here, we grow TiO2 and RuO2 on MXene@carbon cloth (CC) through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal. A self-supported electrode (RuTiO2/MXene@CC) with strong binding at the electrocatalyst–support interface and weak adhesion at electrocatalyst–bubble interface is constructed. The RuTiO2/MXene@CC can reduce the electron density of RuO2 by regulating the electron redistribution at the heterogeneous interface, thus enhancing the adsorption of Cl. RuTiO2/MXene@CC could achieve a high current density of 1000 mA·cm−2 at a small overpotential of 220 mV, superior to commercial dimensionally stable anodes (DSA). This study provides a new strategy for constructing efficient CER catalysts at high current density.

Keywords: TiO2, MXene, high current density, RuO2, chlorine evolution reaction

References(51)

[1]

Qiu, L. S.; Zhang, F.; Qian, Y.; Han, W. W.; He, Y.; Feng, X. D.; Jin, J. X.; Gu, Y. P.; Hao, S. Y.; Zhang, X. W. Europium doped RuO2@TP enhanced chlorine evolution reaction performance by charge redistribution. Chem. Eng. J. 2023, 464, 142623.

[2]

Liu, Y. Y.; Li, C.; Tan, C. H.; Pei, Z. X.; Yang, T.; Zhang, S. Z.; Huang, Q. W.; Wang, Y. H.; Zhou, Z.; Liao, X. Z. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 2023, 14, 2475.

[3]

Cheng, W. T.; Liu, Y. L.; Wu, L.; Chen, R. S.; Wang, J. X.; Chang, S.; Ma, F.; Li, Y.; Ni, H. W. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal. Today 2022, 400–401, 26–34

[4]

Hu, M. C.; Yu, T. Q.; Tan, K. X.; Zhou, A. C.; Luo, L.; Yin, S. B. Ultralow Ru loading RuO2-TiO2 with strong oxide-support interaction for efficient chlorine evolution and ammonia-nitrogen-elimination. Chem. Eng. J. 2023, 465, 143001.

[5]
Deng, Z. L.; Xu, S. Y.; Liu, C. H.; Zhang, X. Q.; Li, M. F.; Zhao, Z. P. Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. in press, https://doi.org/10.1007/s12274-023-5965-7.
DOI
[6]

Khatun, S.; Roy, P. Mott–Schottky heterojunction of Se/NiSe2 as bifunctional electrocatalyst for energy efficient hydrogen production via urea assisted seawater electrolysis. J. Colloid Interface Sci. 2023, 630, 844–854.

[7]

Zhu, X. L.; Wang, P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Zhang, Q. Q.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. J. Mater. Chem. A 2018, 6, 12718–12723.

[8]

Wu, S.; Zhu, Y. C.; Yang, G. S.; Zhou, H.; Li, R. Q.; Chen, S.; Li, H. M.; Li, L. M.; Fontaine, O.; Deng, J. Take full advantage of hazardous electrochemical chlorine erosion to ultrafast produce superior NiFe oxygen evolution reaction electrode. Chem. Eng. J. 2022, 446, 136833.

[9]

Qu, H. Q.; Li, B.; Ma, Y. R.; Xiao, Z. Y.; Lv, Z. G.; Li, Z. J.; Li, W.; Wang, L. Defect-enriched hollow porous carbon nanocages enable highly efficient chlorine evolution reaction. Adv. Mater. 2023, 35, 2301359.

[10]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[11]

Liu, H. M.; Xie, R. K.; Luo, Y. T.; Cui, Z. C.; Yu, Q. M.; Gao, Z. Q.; Zhang, Z. Y.; Yang, F. N.; Kang, X.; Ge, S. Y. et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA·cm−2. Nat. Commun. 2022, 13, 6382.

[12]

Wang, S.; Zhao, R.; Zheng, T.; Fang, Y.; Wang, W. J.; Xue, W. D. Metal-organic framework-derived self-supporting metal boride for efficient electrocatalytic oxygen evolution reaction. J. Colloid Interface Sci. 2022, 618, 34–43.

[13]

Zhu, C. R.; Wang, A. L.; Xiao, W.; Chao, D. L.; Zhang, X.; Tiep, N. H.; Chen, S.; Kang, J.; Wang, X.; Ding, J. et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 30, 1705516

[14]

Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. IrO x @In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.

[15]

Qian, X.; Wei, Y. J.; Sun, M. J.; Han, Y.; Zhang, X. L.; Tian, J.; Shao, M. H. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2T x MXene to improve the electrocatalytic nitrogen reduction. Chin. J. Catal. 2022, 43, 1937–1944.

[16]

Li, W. X.; Sun, Z. L.; Ge, R. Y.; Li, J. C.; Li, Y. R.; Cairney, J. M.; Zheng, R. K.; Li, Y.; Li, S. A.; Li, Q. et al. Nanoarchitectonics of La-doped Ni3S2/MoS2 hetetostructural electrocatalysts for water electrolysis. Small Struct. 2023, 4, 2300175.

[17]

Ren, X.; Shi, J. Y.; Duan, R. H.; Di, J.; Xue, C.; Luo, X.; Liu, Q.; Xia, M. Y.; Lin, B.; Tang, W. Construction of high-efficiency CoS@Nb2O5 heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 4700–4704.

[18]

Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880.

[19]

Khan, U.; Nairan, A.; Gao, J. K.; Zhang, Q. C. Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct. 2023, 4, 2200109.

[20]

Wang, L.; Gong, N.; Zhou, Z.; Zhang, Q. C.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. A MOF derived hierarchically porous 3D N-CoP x /Ni2P electrode for accelerating hydrogen evolution at high current densities. Chin. J. Catal. 2022, 43, 1176–1183.

[21]

Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Res. 2023, 23, 5892–5897

[22]

Zhu, J. W.; Chi, J. Q.; Cui, T.; Guo, L. L.; Wu, S. Q.; Li, B.; Lai, J. P.; Wang, L. F doping and P vacancy engineered FeCoP nanosheets for efficient and stable seawater electrolysis at large current density. Appl. Catal. B: Environ. 2023, 328, 122487.

[23]

Senthil Raja, D.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065

[24]

Zhang, Y. S.; Liu, J. X.; Qian, K.; Jia, A. P.; Li, D.; Shi, L.; Hu, J.; Zhu, J. F.; Huang, W. X. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew. Chem., Int. Ed. 2021, 60, 12074–12081.

[25]

Hu, X. H.; Pan, J. C.; Wang, D.; Zhong, W.; Wang, H. Y.; Wang, L. Y. Quantum-chemical study on the catalytic activity of Ti n Ru m O2 (110) surfaces on chlorine evolution. Chin. Chem. Lett. 2015, 26, 595–598.

[26]

Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angew. Chem., Int. Ed. 2014, 53, 11032–11035.

[27]

Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.

[28]

Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

[29]

Xu, Y. J.; Wang, F.; Lei, S. L.; Wei, Y.; Zhao, D.; Gao, Y. H.; Ma, X.; Li, S. J.; Chang, S. Q.; Wang, M. Q. et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392.

[30]

Bai, X.; Guan, J. Q. Applications of MXene-based single-atom catalysts. Small Struct. 2023, 4, 2200354.

[31]

Xu, T. X.; Wang, J. P.; Cong, Y.; Jiang, S.; Zhang, Q.; Zhu, H.; Li, Y. J.; Li, X. K. Ternary BiOBr/TiO2/Ti3C2T x MXene nanocomposites with heterojunction structure and improved photocatalysis performance. Chin. Chem. Lett. 2020, 31, 1022–1025.

[32]

Gou, Z. L.; Qu, H. Q.; Liu, H. F.; Ma, Y. R.; Zong, L. B.; Li, B.; Xie, C. X.; Li, Z. J.; Li, W.; Wang, L. Coupling of N-doped mesoporous carbon and N-Ti3C2 in 2D sandwiched heterostructure for enhanced oxygen electroreduction. Small 2022, 18, 2106581.

[33]

Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

[34]

Li, H. P.; Li, X. R.; Liang, J. J.; Chen, Y. S. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv. Energy Mater. 2019, 9, 1803987.

[35]

Xu, W.; Xie, H. J.; Cao, F. Y.; Ran, S. S.; Duan, Y. H.; Li, B.; Wang, L. Enhanced interaction between Ru nanoparticles and N, C-modified mesoporous TiO2 for efficient electrocatalytic hydrogen evolution at all pH values. J. Mater. Chem. A 2022, 10, 23751–23759.

[36]

Li, M.; Li, X. L.; Qin, G. F.; Luo, K.; Lu, J.; Li, Y. B.; Liang, G. J.; Huang, Z. D.; Zhou, J.; Hultman, L. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 2021, 15, 1077–1085.

[37]

Wang, F.; Ma, X. D.; Zou, P. J.; Wang, G. X.; Xiong, Y.; Liu, Y.; Ren, F. Z.; Xiong, X. H. Nitrogen-doped carbon decorated TiO2/Ti3C2T x MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568.

[38]

Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

[39]

Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X. F.; Sarmah, A.; Cao, H. X.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2T z MXene nanosheets by molten salt etching. iScience 2021, 24, 103403.

[40]

Sun, S. C.; Jiang, H.; Chen, Z. Y.; Chen, Q.; Ma, M. Y.; Zhen, L.; Song, B.; Xu, C. Y. Bifunctional WC-supported RuO2 nanoparticles for robust water splitting in acidic media. Angew. Chem., Int. Ed. 2022, 61, e202202519.

[41]

Du, Y. M.; Li, B.; Xu, G. R.; Wang, L. Recent advances in interface engineering strategy for highly-efficient electrocatalytic water splitting. InfoMat 2023, 5, e12377.

[42]

Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Confined pyrolysis synthesis of well-dispersed cobalt copper bimetallic three-dimensional N-doped carbon framework as efficient water splitting electrocatalyst. Chem. Res. Chin. Univ. 2022, 38, 750–757.

[43]

Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2 - based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.

[44]

Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

[45]

Zou, Y.; Kazemi, S. A.; Shi, G.; Liu, J. X.; Yang, Y. W.; Bedford, N. M.; Fan, K. C.; Xu, Y. M.; Fu, H. Q.; Dong, M. Y. et al. Ruthenium single-atom modulated Ti3C2T x MXene for efficient alkaline electrocatalytic hydrogen production. EcoMat 2023, 5, e12274.

[46]

Yin, H. J.; Dou, Y. H.; Chen, S.; Zhu, Z. J.; Liu, P. R.; Zhao, H. J. 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: Recent progress and perspectives. Adv. Mater. 2020, 32, 1904870

[47]
Ji, J. P.; Liu, J. X.; Shi, L.; Guo, S. Q.; Cheng, N. Y.; Liu, P. R.; Gu, Y. T.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Ruthenium oxide clusters immobilized in cationic vacancies of 2D titanium oxide for chlorine evolution reaction. Small Struct., in press, https://doi.org/10.1002/sstr.202300240.
DOI
[48]

Nguyen, T. D.; Scherer, G. G.; Xu, Z. J. A facile synthesis of size-controllable IrO2 and RuO2 nanoparticles for the oxygen evolution reaction. Electrocatalysis 2016, 7, 420–427.

[49]

Wang, Y. H.; Liu, Y. Y.; Wiley, D.; Zhao, S. L.; Tang, Z. Y. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 2021, 9, 18974–18993.

[50]

Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Full kinetics from first principles of the chlorine evolution reaction over a RuO2 (110) model electrode. Angew. Chem., Int. Ed. 2016, 55, 7501–7504.

[51]

Lim, T.; Kim, J. H.; Kim, J.; Baek, D. S.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Exner, K. S.; Joo, S. H. General efficacy of atomically dispersed Pt catalysts for the chlorine evolution reaction: Potential-dependent switching of the kinetics and mechanism. ACS Catal. 2021, 11, 12232–12246.

File
12274_2024_6419_MOESM1_ESM.pdf (726.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2023
Revised: 01 December 2023
Accepted: 15 December 2023
Published: 02 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21971132, 52072197, and 52272222), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), Taishan Scholar Young Talent Program (No. tsqn201909114), the 111 Project of China (No. D20017), Shandong Province Double-Hundred Talent Plan (No. WST2020003), and State Key Laboratory of Heavy Oil Processing (No. SKLHOP202202006).

Return