Journal Home > Volume 17 , Issue 6

Currently, dual atomic catalysts (DACs) with neighboring active sites for oxygen reduction reaction (ORR) still meet lots of challenges in the synthesis, especially the construction of atomic pairs of elements from different blocks of the periodic table. Herein, a “rare earth (Ce)-metalloid (Se)” non-bonding heteronuclear diatomic electrocatalyst has been constructed for ORR by rational coordination and carbon support defect engineering. Encouraging, the optimized Ce-Se diatomic catalysts (Ce-Se DAs/NC) displayed a half-wave potential of 0.886 V vs. reversible hydrogen electrode (RHE) and excellent stability, which surpass those of separate Ce or Se single atoms and most single/dual atomic catalysts ever reported. In addition, a primary zinc-air battery constructed using Ce-Se DAs/NC delivers a higher peak power density (209.2 mW·cm−2) and specific capacity (786.4 mAh·gZn−1) than state-of-the-art noble metal catalysts Pt/C. Theoretical calculations reveal that the Ce-Se DAs/NC has improved the electroactivity of the Ce-N4 region due to the electron transfer towards the nearby Se specific activity (SA) sites. Meanwhile, the more electron-rich Se sites promote the adsorptions of key intermediates, which results in the optimal performances of ORR on Ce-Se DAs/NC. This work provides new perspectives on electronic structure modulations via non-bonded long-range coordination micro-environment engineering in DACs for efficient electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Non-bonding modulations between single atomic cerium and monodispersed selenium sites towards efficient oxygen reduction

Show Author's information Leilei Yin1Shuai Zhang1Mingzi Sun2Siyuan Wang1Bolong Huang2,3( )Yaping Du1( )
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China

Abstract

Currently, dual atomic catalysts (DACs) with neighboring active sites for oxygen reduction reaction (ORR) still meet lots of challenges in the synthesis, especially the construction of atomic pairs of elements from different blocks of the periodic table. Herein, a “rare earth (Ce)-metalloid (Se)” non-bonding heteronuclear diatomic electrocatalyst has been constructed for ORR by rational coordination and carbon support defect engineering. Encouraging, the optimized Ce-Se diatomic catalysts (Ce-Se DAs/NC) displayed a half-wave potential of 0.886 V vs. reversible hydrogen electrode (RHE) and excellent stability, which surpass those of separate Ce or Se single atoms and most single/dual atomic catalysts ever reported. In addition, a primary zinc-air battery constructed using Ce-Se DAs/NC delivers a higher peak power density (209.2 mW·cm−2) and specific capacity (786.4 mAh·gZn−1) than state-of-the-art noble metal catalysts Pt/C. Theoretical calculations reveal that the Ce-Se DAs/NC has improved the electroactivity of the Ce-N4 region due to the electron transfer towards the nearby Se specific activity (SA) sites. Meanwhile, the more electron-rich Se sites promote the adsorptions of key intermediates, which results in the optimal performances of ORR on Ce-Se DAs/NC. This work provides new perspectives on electronic structure modulations via non-bonded long-range coordination micro-environment engineering in DACs for efficient electrocatalysis.

Keywords: catalyst, oxygen reduction reaction (ORR), rare earth, metalloid, non-bonding modulation

References(58)

[1]

Huang, Y. C.; Guo, Z. J.; Liu, H.; Zhang, S. Q.; Wang, P. S.; Lu, J.; Tong, Y. X. Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Adv. Funct. Mater. 2019, 29, 1903490.

[2]

Wang, Y. X.; Chen, D. M.; Zhang, J. N.; Balogun, M. S.; Wang, P. S.; Tong, Y. X.; Huang, Y. C. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2112738.

[3]
Zhu, Z. X.; Luo, L.; He, Y. X.; Mushtaq, M.; Li, J. Q.; Yang, H.; Khanam, Z.; Qu, J.; Wang, Z. M.; Balogun, M. S. High-performance alkaline freshwater and seawater hydrogen catalysis by sword-head structured Mo2N-Ni3Mo3N tunable interstitial compound electrocatalysts. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202306061.
[4]

Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal. B Environ. 2019, 254, 186–193.

[5]

Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A. P.; Fowler, M.; Chen, Z. W. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.

[6]

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

[7]

Liu, J. N.; Zhao, C. X.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553.

[8]

Zhu, X. F.; Hu, C. G.; Amal, R.; Dai, L. M.; Lu, X. Y. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities. Energy Environ. Sci. 2020, 13, 4536–4563.

[9]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[10]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[11]

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

[12]

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-C x S y atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

[13]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[14]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[15]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[16]

Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

[17]

Zhang, H. W.; Jin, X. D.; Lee, J. M.; Wang, X. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 2022, 16, 17572–17592.

[18]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[19]
Sun, J. K.; Pan, Y. W.; Xu, M. Q.; Sun, L.; Zhang, S. L.; Deng, W. Q.; Zhai, D. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Res., in press, https://doi.org/10.1007/s12274-023-5898-1.
[20]

Fu, J. H.; Dong, J. H.; Si, R.; Sun, K. J.; Zhang, J. Y.; Li, M. R.; Yu, N. N.; Zhang, B. S.; Humphrey, M. G.; Fu, Q. et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal. 2021, 11, 1952–1961.

[21]

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

[22]

Sui, R.; Zhang, X. J.; Wang, X. D.; Wang, X. Y.; Pei, J. J.; Zhang, Y. F.; Liu, X. R.; Chen, W. X.; Zhu, W.; Zhuang, Z. B. Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano Res. 2022, 15, 7968–7975

[23]

Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.

[24]

Zhang, S. L.; Hou, M. C.; Zhai, Y. L.; Liu, H. J.; Zhai, D.; Zhu, Y. Q.; Ma, L.; Wei, B.; Huang, J. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, 2302739.

[25]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[26]

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

[27]

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

[28]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[29]

Wang, X.; Zhu, Y.; Li, H.; Lee, J. M.; Tang, Y. W.; Fu, G. T. Rare-earth single-atom catalysts: A new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.

[30]

Sun, M. Z.; Wong, H. H.; Wu, T.; Dougherty, A. W.; Huang, B. L. Stepping out of transition metals: Activating the dual atomic catalyst through main group elements. Adv. Energy Mater. 2021, 11, 2101404.

[31]

Sun, K. A.; Yu, K.; Fang, J. J.; Zhuang, Z. W.; Tan, X.; Wu, Y.; Zeng, L. Y.; Zhuang, Z. B.; Pan, Y.; Chen, C. Nature-inspired design of molybdenum-selenium dual-single-atom electrocatalysts for CO2 reduction. Adv. Mater. 2022, 34, 2206478.

[32]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. 2023, 135, e202219191.

[33]

Yin, L. L.; Zhang, S.; Sun, M. Z.; Wang, S. Y.; Huang, B. L.; Du, Y. P. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

[34]

Wang, X.; Wang, J. W.; Wang, P.; Li, L. C.; Zhang, X. Y.; Sun, D. M.; Li, Y. F.; Tang, Y. W.; Wang, Y.; Fu, G. T. Engineering 3d-2p-4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv. Mater. 2022, 34, 2206540.

[35]

Wang, X.; Tang, Y. W.; Lee, J. M.; Fu, G. T. Recent advances in rare-earth-based materials for electrocatalysis. Chem Catal. 2022, 2, 967–1008.

[36]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

[37]

Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46, 6671–6687.

[40]

Head, J. D.; Zerner, M. C. A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

[41]

McNellis, E. R.; Meyer, J.; Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys. Rev. B 2009, 80, 205414.

[42]

Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016, 116, 5105–5154.

[43]

Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

[44]

Hu, H.; Wang, J. J.; Cui, B. F.; Zheng, X. R.; Lin, J. G.; Deng, Y. D.; Han, X. P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202114441.

[45]

He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.

[46]

Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

[47]

Tang, X. N.; Wei, Y. H.; Zhai, W. J.; Wu, Y. G.; Hu, T.; Yuan, K.; Chen, Y. W. Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 2023, 35, 2208942.

[48]

Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

[49]

Li, O. L.; Chiba, S.; Wada, Y.; Panomsuwan, G.; Ishizaki, T. Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 2073–2082.

[50]

Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

[51]

Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022, 308, 121206.

[52]

Deng, D. J.; Qian, J. C.; Liu, X. Z.; Li, H. P.; Su, D.; Li, H. N.; Li, H. M.; Xu, L. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2022, 32, 2203471.

[53]

Li, J. C.; Qin, X. P.; Xiao, F.; Liang, C. H.; Xu, M. J.; Meng, Y.; Sarnello, E.; Fang, L. Z.; Li, T.; Ding, S. C. et al. Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nano Lett. 2021, 21, 4508–4515.

[54]

Chu, Y. Y.; Luo, E. G.; Wei, Y.; Zhu, S. Y.; Wang, X.; Yang, L. T.; Gao, N. X.; Wang, Y.; Jiang, Z.; Liu, C. P. et a. Dual single-atom catalyst design to build robust oxygen reduction electrode via free radical scavenging. Chem Catal. 2023, 3, 100532.

[55]

Zhao, Y. J.; Wang, H.; Li, J.; Fang, Y.; Kang, Y. S.; Zhao, T. Y.; Zhao, C. Y. Regulating the spin-state of rare-earth Ce single atom catalyst for boosted oxygen reduction in neutral medium. Adv. Funct. Mater. 2023, 33, 2305268.

[56]

Jiang, K.; Wang, H. T. Electrocatalysis over graphene-defect-coordinated transition-metal single-atom catalysts. Chem 2018, 4, 194–195.

[57]

Xiong, T. Z.; Zhu, Z. X.; He, Y. X.; Balogun, M. S.; Huang, Y. C. Phase evolution on the hydrogen adsorption kinetics of NiFe-based heterogeneous catalysts for efficient water electrolysis. Small Methods 2023, 7, 2201472.

[58]

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

File
12274_2024_6416_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 November 2023
Revised: 11 November 2023
Accepted: 14 December 2023
Published: 13 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We gratefully acknowledge the support from the National Key R&D Program of China (No. 2021YFA1501101), the National Natural Science Foundation of China (No. 21971117), the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (No. N_PolyU502/21), the National Natural Science Foundation of China/Research Grants Council (RGC) of Hong Kong Collaborative Research Scheme (No. CRS_PolyU504/22), the Functional Research Funds for the Central Nankai University (No. 63186005), the Tianjin Key Lab for Rare Earth Materials and Applications (No. ZB19500202), the Open Funds (No. RERU2019001) of the State Key Laboratory of Rare Earth Resource Utilization, the 111 Project (No. B18030) from China, the Beijing-Tianjin-Hebei Collaborative Innovation Project (No. 19YFSLQY00030), the Outstanding Youth Project of Tianjin 21 Natural Science Foundation (No. 20JCJQJC00130), the Key Project of Tianjin Natural Science Foundation (No. 20JCZDJC00650), the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V), the Shenzhen Fundamental Research Scheme-General Program (No. JCYJ20220531090807017), the Natural Science Foundation of Guangdong Province (No. 2023A1515012219), and the Departmental General Research Fund (Project Code: ZVUL) from The Hong Kong Polytechnic University. B. L. H. also thanks the support from Research Centre for Carbon-Strategic Catalysis (RC-CSC), Research Institute for Smart Energy (RISE), and Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic University.

Return