Journal Home > Volume 17 , Issue 6

The distance effect of the doped heteroatoms away from the catalytic centers has rarely been reported. In this work, we conducted density functional theory calculations to thoroughly investigate the influence of heteroatom (N, P, B, and S atoms) doping distance on the oxygen reduction reaction (ORR) activity of graphene-based FeN4 sites. We uncovered a Sabatier-like relationship between heteroatom doping distance and ORR activity of FeN4 sites. The nearest doping does not significantly improve and even block the ORR activity of FeN4 sites. Optimal ORR activity is achieved when the heteroatoms are 4–5 Å (N, P, and S atoms) or 6–7 Å (B atoms) away from the Fe atoms. Analysis of electronic structure indicates that distance effect can modulate the local chemical environment of Fe atoms, thereby account for the changes in ORR activity along with the doping distance and doping atoms. This study provides insights into the influence of heteroatom doping on the chemical environment of reaction active centers, and provides the theoretical guidance for controlling the doping distance of heteroatoms to achieve optimal catalytic activity and selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

How the microenvironment dominated by the distance effect to regulate the FeN4 site ORR activity and selectivity?

Show Author's information Peng Li1Qingfeng Guo2Jianrui Zhang1( )Ruilin Chen3( )Shujiang Ding1Yaqiong Su1( )
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China
Huanghe Science and Technology College, Zhengzhou 450063, China
General Research Institute of Engineering of Gotion High-Tech, Hefei 230041, China

Abstract

The distance effect of the doped heteroatoms away from the catalytic centers has rarely been reported. In this work, we conducted density functional theory calculations to thoroughly investigate the influence of heteroatom (N, P, B, and S atoms) doping distance on the oxygen reduction reaction (ORR) activity of graphene-based FeN4 sites. We uncovered a Sabatier-like relationship between heteroatom doping distance and ORR activity of FeN4 sites. The nearest doping does not significantly improve and even block the ORR activity of FeN4 sites. Optimal ORR activity is achieved when the heteroatoms are 4–5 Å (N, P, and S atoms) or 6–7 Å (B atoms) away from the Fe atoms. Analysis of electronic structure indicates that distance effect can modulate the local chemical environment of Fe atoms, thereby account for the changes in ORR activity along with the doping distance and doping atoms. This study provides insights into the influence of heteroatom doping on the chemical environment of reaction active centers, and provides the theoretical guidance for controlling the doping distance of heteroatoms to achieve optimal catalytic activity and selectivity.

Keywords: structure–activity relationship, microenvironment, distance effect, heteroatom doping FeN4, Sabatier-like relationship

References(56)

[1]

Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

[2]

Rusnaeni, N.; Purwanto, W. W.; Nasikin, M.; Hendrajaya, L. The effect of NaOH in the formation PtNi/C nanocatalyst for cathode of PEMFC. J. Appl. Sci. 2010, 10, 2899–2904.

[3]

Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt (111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

[4]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[5]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[6]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[7]

Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

[8]

Mitchell, S.; Pérez-Ramírez, J. Single atom catalysis: A decade of stunning progress and the promise for a bright future. Nat. Commun. 2020, 11, 4302.

[9]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[10]

Chen, Z. X.; Liu, J.; Koh, M. J.; Loh, K. P. Single-atom catalysis: From simple reactions to the synthesis of complex molecules. Adv. Mater. 2022, 34, 2103882.

[11]

Kottwitz, M.; Li, Y. Y.; Wang, H. D.; Frenkel, A. I.; Nuzzo, R. G. Single atom catalysts: A review of characterization methods. Chem.—Methods 2021, 1, 278–294.

[12]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[13]

Hu, H.; Wang, J. L.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T.; Wu, J. B. Stability of single-atom catalysts for electrocatalysis. J. Mater. Chem. A 2022, 10, 5835–5849.

[14]

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

[15]

Hu, J. W.; Liu, W.; Xin, C. C.; Guo, J. Y.; Cheng, X. S.; Wei, J. Z.; Hao, C.; Zhang, G. F.; Shi, Y. T. Carbon-based single atom catalysts for tailoring the ORR pathway: A concise review. J. Mater. Chem. A 2021, 9, 24803–24829.

[16]

Zhong, L. X.; Jiang, C. Y.; Zheng, M. T.; Peng, X. W.; Liu, T. C.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Gu, L. Q.; Zhang, S. Q. et al. Wood carbon based single-atom catalyst for rechargeable Zn-air batteries. ACS Energy Lett. 2021, 6, 3624–3633.

[17]

Fu, C. H.; Luo, L. X.; Yang, L. J.; Shen, S. Y.; Wei, G. H.; Zhang, J. L. Breaking the scaling relationship of ORR on carbon-based single-atom catalysts through building a local collaborative structure. Catal. Sci. Technol. 2021, 11, 7764–7772.

[18]

Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

[19]

Kattel, S.; Wang, G. F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.

[20]

Shi, Z. S.; Yang, W. Q.; Gu, Y. T.; Liao, T.; Sun, Z. Q. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 2020, 7, 2001069.

[21]

Wang, H.; Shao, Y.; Mei, S. L.; Lu, Y.; Zhang, M.; Sun, J. K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Y. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363–9419.

[22]

Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-metal atom electrocatalysts: Theory, synthesis, characterization, and applications. Adv. Energy Mater. 2022, 12, 2102715.

[23]

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

[24]

Liu, Y. M.; Roy, S.; Sarkar, S.; Xu, J. Q.; Zhao, Y. F.; Zhang, J. J. A review of carbon dots and their composite materials for electrochemical energy technologies. Carbon Energy 2021, 3, 795–826.

[25]

Fajrial, A. K.; Abdulkarim, M. F.; Saputro, A. G.; Agusta, M. K.; Nugraha; Dipojono, H. K. Boron and nitrogen Co-doping configuration on pyrolyzed Fe-N4/C catalyst. Procedia Eng. 2017, 170, 131–135.

[26]

Fajrial, A. K.; Abdulkarim, M. F.; Saputro, A. G.; Agusta, M. K.; Nugraha; Dipojono, H. K. Boron and nitrogen Co-doping configuration on pyrolyzed Fe-N4/C catalyst. Procedia Eng. 2017, 170, 131–135

[27]

Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.

[28]

Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 54, 9907–9910.

[29]

Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

[30]

Li, Q. K.; Li, X. F.; Zhang, G. Z.; Jiang, J. Cooperative spin transition of monodispersed FeN3 sites within graphene induced by CO adsorption. J. Am. Chem. Soc. 2018, 140, 15149–15152.

[31]

Cao, X. R.; Li, X. F.; Hu, W. Tunable electronic and magnetic properties of graphene-embedded transition metal-N4 complexes: Insight from first-principles calculations. Chem.—Asian J. 2018, 13, 3239–3245.

[32]

Wu, L.; Cao, X. R.; Hu, W.; Ji, Y. F.; Zhu, Z. Z.; Li, X. F. Improving the oxygen reduction reaction activity of FeN4-graphene via tuning electronic characteristics. ACS Appl. Energy Mater. 2019, 2, 6634–6641.

[33]

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

[34]

Sun, J. C.; Feng, S.; Wang, X. J.; Zhang, G. Z.; Luo, Y.; Jiang, J. Regulation of electronic structure of graphene nanoribbon by tuning long-range dopant-dopant coupling at distance of tens of nanometers. J. Phys. Chem. Lett. 2020, 11, 6907–6913.

[35]

Li, P.; Xu, J. W.; Su, Y. Q. Unravelling the 2e ORR activity induced by distance effect on main-group metal InN4 surface based on first principles. Molecules 2022, 27, 7720.

[36]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[37]

Han, Y. L.; Li, Q. K.; Ye, K.; Luo, Y.; Jiang, J.; Zhang, G. Z. Impact of active site density on oxygen reduction reactions using monodispersed Fe-N-C single-atom catalysts. ACS Appl. Mater. Interfaces 2020, 12, 15271–15278.

[38]

Niu, J. T.; Qi, W. J.; Li, C.; Mao, M.; Zhang, Z. G.; Chen, Y.; Li, W. L.; Ge, S. S. Mechanisms of oxygen reduction reaction on B doped FeN4-G and FeN4-CNT catalysts for proton-exchange membrane fuel cells. Int. J. Energy Res. 2021, 45, 8524–8535.

[39]

Lin, Y. Y.; Liu, K.; Chen, K. J.; Xu, Y.; Li, H. M.; Hu, J. H.; Lu, Y. R.; Chan, T. S.; Qiu, X. Q.; Fu, J. W. et al. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction. ACS Catal. 2021, 11, 6304–6315.

[40]

Yin, H. B.; Yuan, P. F.; Lu, B. A.; Xia, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.

[41]

Jia, Y.; Xiong, X. Y.; Wang, D. N.; Duan, X. X.; Sun, K.; Li, Y. J.; Zheng, L. R.; Lin, W. F.; Dong, M. D.; Zhang, G. X. et al. Atomically dispersed Fe-N4 modified with precisely located S for highly efficient oxygen reduction. Nano-Micro Lett. 2020, 12, 116.

[42]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[43]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple . Phys. Rev. Lett. 1997, 78, 1396–1396

[44]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[45]

Fattebert, J. L.; Gygi, F. First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem. 2003, 93, 139–147.

[46]

Petrosyan, S. A.; Rigos, A. A.; Arias, T. A. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 2005, 109, 15436–15444.

[47]

Andreussi, O.; Dabo, I.; Marzari, N. Revised self-consistent continuum solvation in electronic–structure calculations. J. Chem. Phys. 2012, 136, 064102.

[48]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[49]

Dipojono, H. K.; Saputro, A. G.; Fajrial, A. K.; Agusta, M. K.; Akbar, F. T.; Rusydi, F.; Wicaksono, D. H. B. Oxygen reduction reaction mechanism on a phosporus-doped pyrolyzed graphitic Fe/N/C catalyst. New J. Chem. 2019, 43, 11408–11418.

[50]

Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochim. Acta 2007, 52, 5829–5836.

[51]
Haynes, W. M. CRC Handbook of Chemistry and Physics; CRC Press: New York, 1996.
[52]

Wang, H. H.; Lv, L. B.; Zhang, S. N.; Su, H.; Zhai, G. Y.; Lei, W. W.; Li, X. H.; Chen, J. S. Synergy of Fe-N4 and non-coordinated boron atoms for highly selective oxidation of amine into nitrile. Nano Res. 2020, 3, 2079–2084.

[53]

Qin, Y. Y.; Li, P.; Li, Z.; Wu, T. T.; Su, Y. Q. Potential-dependent oxygen reduction on FeN4 under explicit solvation environment. J. Phys. Chem. C 2023, 127, 4934–4941.

[54]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[55]

Zhang, X. R.; Wen, X. Y.; Pan, C.; Xiang, X.; Hao, C.; Meng, Q. H.; Tian, Z. Q.; Shen, P. K.; Jiang, S. P. N species tuning strategy in N,S Co-doped graphene nanosheets for electrocatalytic activity and selectivity of oxygen redox reactions. Chem. Eng. J. 2022, 431, 133216.

[56]

Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I. B,N- and P,N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A 2013, 1, 3694–3699.

File
12274_2024_6414_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2023
Revised: 01 December 2023
Accepted: 11 December 2023
Published: 02 February 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

Y. Q. S. acknowledges the “Young Talent Support Plan” of Xi’an Jiaotong University. Supercomputing facilities were provided by Hefei Advanced Computing Center.

Return