Journal Home > Volume 17 , Issue 6

Improving the catalytic activity of non-noble metal single atom catalysts (SACs) has attracted considerable attention in materials science. Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity, it often involves in-plane modulation and requires high temperatures. Herein, we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co–S bond anchored onto graphitic carbon nitride (C3N4) at room temperature (RT). Each Co atom is bonded to four N atoms and one S atom (Co-(N, S)/C3N4). Owing to the greater electronegativity of S in the Co–S bond, the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level. Consequently, when employed for the photocatalytic hydrogen evolution reaction, the adsorption energy of intermediate hydrogen (H*) on the Co atoms is remarkably low. In the presence of the Co-(N, S)/C3N4 SACs, the hydrogen evolution rates reach up to 10 mmol/(g·h), which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C3N4 and noble platinum nanoparticles (PtNPs)/C3N4 catalysts, respectively. Attributed to the tailorable axial Co–S bond in the SAC, the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions. This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution

Show Author's information Ning Kang1Lingwen Liao2Xue Zhang1Zhen He3,4Binlu Yu1Jiahong Wang1Yongquan Qu5Paul K. Chu6Seeram Ramakrishna7Xue-Feng Yu1Xin Wang1( )Licheng Bai1( )
Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
National University of Singapore (NUS) Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117542, Singapore

Abstract

Improving the catalytic activity of non-noble metal single atom catalysts (SACs) has attracted considerable attention in materials science. Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity, it often involves in-plane modulation and requires high temperatures. Herein, we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co–S bond anchored onto graphitic carbon nitride (C3N4) at room temperature (RT). Each Co atom is bonded to four N atoms and one S atom (Co-(N, S)/C3N4). Owing to the greater electronegativity of S in the Co–S bond, the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level. Consequently, when employed for the photocatalytic hydrogen evolution reaction, the adsorption energy of intermediate hydrogen (H*) on the Co atoms is remarkably low. In the presence of the Co-(N, S)/C3N4 SACs, the hydrogen evolution rates reach up to 10 mmol/(g·h), which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C3N4 and noble platinum nanoparticles (PtNPs)/C3N4 catalysts, respectively. Attributed to the tailorable axial Co–S bond in the SAC, the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions. This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.

Keywords: graphitic carbon nitride, photocatalytic hydrogen evolution, axial coordination environment, local electronic structure, transition metal single-atom

References(50)

[1]

Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

[2]

Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

[3]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[4]

Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

[5]

Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang. B. Atomically dispersed co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

[6]

Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.

[7]

Johnson, J. A.; Zhang, X.; Reeson, T. C.; Chen, Y. S.; Zhang, J. Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework via in situ metalation. J. Am. Chem. Soc. 2014, 136, 15881–15884.

[8]

Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

[9]

Zhang, W. W.; Zhang, J. Y.; Lan, X.; Chen, Z. Y.; Wang, T. M. Photocatalytic performance of ZnGa2O4 for degradation of methylene blue and its improvement by doping with Cd. Catal. Commun. 2010, 11, 1104–1108.

[10]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[11]

Duan, L. L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. C. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 2012, 4, 418–423.

[12]

Wang, L.; Duan, L. L.; Stewart, B.; Pu, M. P.; Liu, J. H.; Privalov, T.; Sun, L. C. Toward controlling water oxidation catalysis: Tunable activity of ruthenium complexes with axial imidazole/DMSO ligands. J. Am. Chem. Soc. 2012, 134, 18868–18880.

[13]

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

[14]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[15]

Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-N x sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

[16]

Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.

[17]

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

[18]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[19]

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

[20]

Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing Fe x C/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.

[21]

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

[22]

Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

[23]

Pu, Z. H.; Zhao, J. H.; Amiinu, I. S.; Li, W. Q.; Wang, M.; He, D. P.; Mu, S. C. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 952–957.

[24]

Zhang, P.; Wang, T.; Gong, J. L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chem 2018, 4, 223–245.

[25]

Chernyshev, V. M.; Astakhov, A. V.; Chikunov, I. E.; Tyurin, R. V.; Eremin, D. B.; Ranny, G. S.; Khrustalev, V. N.; Ananikov, V. P. Pd and Pt catalyst poisoning in the study of reaction mechanisms: What does the mercury test mean for catalysis? ACS Catal. 2019, 9, 2984–2995.

[26]

Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

[27]

Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

[28]

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

[29]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[30]

Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[31]

Chen, K.; Chai, Z. G.; Li, C.; Shi, L. R.; Liu, M. X.; Xie, Q.; Zhang, Y. F.; Xu, D. S.; Manivannan, A.; Liu, Z. F. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano 2016, 10, 3665–3673.

[32]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 6164–6175.

[33]

Jiang, J. X.; Ding, W.; Li, W.; Wei, Z. D. Freestanding single-atom-layer Pd-based catalysts: Oriented splitting of energy bands for unique stability and activity. Chem 2020, 6, 431–447.

[34]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[35]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[36]

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

[37]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[38]

Jones, J.; Xiong, H. F.; Delarive, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[39]

Wang, Y.; Phua, S. Z. F.; Dong, G.; Liu, X. Q.; He, B.; Zhai, Q. L.; Li, Y. C.; Zheng, C. C.; Quan, H. P.; Li, Z. et al. Structure tuning of polymeric carbon nitride for solar energy conversion: From nano to molecular scale. Chem 2019, 5, 2775–2813.

[40]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[41]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[42]

Zhou, G.; Shan, Y.; Hu, Y. Y.; Xu, X. Y.; Long, L. Y.; Zhang, J. L.; Dai, J.; Guo, J. H.; Shen, J. C.; Li, S. et al. Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution. Nat. Commun. 2018, 9, 3366.

[43]

Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

[44]

Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 9312–9317.

[45]

Arcon, I.; Tuel, A.; Kodre, A.; Martin, G.; Barbier, A. EXAFS determination of the size of Co clusters on silica. J. Synchrotron Rad. 2001, 8, 575–577.

[46]

Yang, H.; Duan, X. H.; Zhao, J. F.; Guo, L. N. Transition-metal-free tandem radical thiocyanooxygenation of olefinic amides: A new route to SCN-containing heterocycles. Org. Lett. 2015, 17, 1998–2001.

[47]

Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

[48]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[49]

Qiao, M.; Liu, J.; Wang, Y.; Li, Y. F.; Chen, Z. F. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J. Am. Chem. Soc. 2018, 140, 12256–12262.

[50]

Lopato, E. M.; Eikey, E. A.; Simon, Z. C.; Back, S.; Tran, K.; Lewis, J.; Kowalewski, J. F.; Yazdi, S.; Kitchin, J. R.; Ulissi, Z. W. et al. Parallelized screening of characterized and DFT-modeled bimetallic colloidal cocatalysts for photocatalytic hydrogen evolution. ACS Catal. 2020, 10, 4244–4252.

File
12274_2024_6411_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2023
Revised: 21 November 2023
Accepted: 12 December 2023
Published: 13 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 22008251), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010318), and Shenzhen Science and Technology Program (No. JCYJ20220531095813031). The authors thank the Beijing Synchrotron Radiation Facility (beamline 1W1B) for the use of the instruments.

Return