AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Woven fabric triboelectric nanogenerators for human–computer interaction and physical health monitoring

Yu Miao1,2,§Mengjuan Zhou2,§Jia Yi3Yanyan Wang1Guangjin Tian1Hongxia Zhang1Wenlong Huang1,2Wenhao Wang1Ronghui Wu2( )Liyun Ma1,4( )
College of Textile and Clothing, Xinjiang University, Urumqi 830046, China
College of Textiles, Donghua University, Shanghai 201620, China
College of Physics, Xiamen University, Xiamen 201620, China
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK

§ Yu Miao and Mengjuan Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Fabric parameters, such as yarn amounts, yarn parallel spacing gaps, and weaving structures, have a substantial impact on the electric outputs and applications of textile triboelectric nanogenerators (T-TENGs). The experiments and data analysis presented in this article offer guidance for future T-TENG structure design, which is demonstrated for human-computer interaction and self-powered real-time monitoring.

Abstract

Triboelectric nanogenerator (TENG) converts mechanical energy into valuable electrical energy, offering a solution for future energy needs. As an indispensable part of TENG, textile TENG (T-TENG) has incredible advantages in harvesting biomechanical energy and physiological signal monitoring. However, the application of T-TENG is restricted, partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited. This study comprehensively investigates the effect of weaving structure on fabric TENGs (F-TENGs) for direct-weaving yarn TENGs and post-coating fabric TENGs. For direct-weaving F-TENGs, a single-yarn TENG (Y-TENG) with a core–sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene (PTFE) filaments as the sheath yarn. Twelve fabrics with five different sets of parameters were designed and investigated. For post-coating F-TENGs, fabrics with weaving structures of plain, twill, satin, and reinforced twill were fabricated and coated with conductive silver paint. Overall, the twill F-TENGs have the best electrical outputs, followed by the satin F-TENGs and plain weave F-TENGs. Besides, the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance. Moreover, T-TENGs are demonstrated for human–computer interaction and self-powered real-time monitoring. This systematic work provides guidance for the future T-TENG’s design.

Electronic Supplementary Material

Download File(s)
12274_2024_6410_MOESM2_ESM.pdf (2.9 MB)

References

[1]

Wang, Z. L.; Wang, A. C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51.

[2]

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

[3]

Tan, S.; Islam, M. R.; Li, H. X.; Fernando, A.; Afroj, S.; Karim, N. Highly scalable, sensitive and ultraflexible Graphene-based wearable E-textiles sensor for bio-signal detection. Adv. Sensor Res. 2022, 1, 2200010.

[4]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[5]

Liu, D.; Gao, Y. K.; Zhou, L. L.; Wang, J.; Wang, Z. L. Recent advances in high-performance triboelectric nanogenerators. Nano Res. 2023, 16, 11698–11717.

[6]

Qin, Y. H.; Fu, X. P.; Lin, Y.; Wang, Z.; Cao, J.; Zhang, C. Self-powered internet of things sensing node based on triboelectric nanogenerator for sustainable environmental monitoring. Nano Res. 2023, 16, 11878–11884.

[7]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[8]

Du, Y.; Tang, Q.; Fu, S. K.; Shan, C. C.; Zeng, Q. X.; Guo, H. Y.; Hu, C. G. Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy. Nano Res. 2023, 16, 11900–11906.

[9]

Chen, H. M.; Yang, W.; Zhang, C.; Wu, M. Q.; Li, W. J.; Zou, Y. X.; Lv, L. F.; Yu, H. L.; Ke, H. Z.; Liu, R. P. et al. Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Res. 2022, 15, 2465–2471.

[10]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[11]

Cheng, R. W.; Dong, K.; Chen, P. F.; Ning, C.; Peng, X.; Zhang, Y. H.; Liu, D.; Wang, Z. L. High output direct-current power fabrics based on the air breakdown effect. Energy Environ. Sci. 2021, 14, 2460–2471.

[12]

Tat, T.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Xu, J.; Chen, J. Smart textiles for healthcare and sustainability. ACS Nano 2022, 16, 13301–13313.

[13]

Jiang, J. X.; Sun, X. H.; Wen, Z. Perspectives of triboelectric sensors for internet of healthcare. Adv. Sensor Res. 2022, 1, 2200011.

[14]

Meng, J.; Guo, Z. H.; Pan, C. X.; Wang, L. Y.; Chang, C. Y.; Li, L. W.; Pu, X.; Wang, Z. L. Flexible textile direct-current generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces. ACS Energy Lett. 2021, 6, 2442–2450.

[15]

Meng, J.; Pan, C. X.; Li, L. W.; Guo, Z. H.; Xu, F.; Jia, L. Y.; Wang, Z. L.; Pu, X. Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode. Energy Environ. Sci. 2022, 15, 5159–5167.

[16]

Zhao, Z. Z.; Huang, Q. Y.; Yan, C.; Liu, Y. D.; Zeng, X. W.; Wei, X. D.; Hu, Y. F.; Zheng, Z. J. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020, 70, 104528.

[17]

Ye, C.; Dong, S. J.; Ren, J.; Ling, S. J. Ultrastable and high-performance silk energy harvesting textiles. Nano-Micro Lett. 2020, 12, 12.

[18]

Fan, W. J.; He, Q.; Meng, K. Y.; Tan, X. L.; Zhou, Z. H.; Zhang, G. Q.; Yang, J.; Wang, Z. L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

[19]

Dong, X. Y.; Liu, Q.; Liu, S.; Wu, R. H.; Ma, L. Y. Silk fibroin based conductive film for multifunctional sensing and energy harvesting. Adv. Fiber Mater. 2022, 4, 885–893.

[20]
Chen, C. Y.; Chen, L. J.; Wu, Z. Y.; Guo, H. Y.; Yu, W. D.; Du, Z. Q.; Wang, Z. L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020 , 32, 84–93.
[21]

Pu, X.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Natl. Sci. Rev. 2023, 10, nwac170.

[22]

Chen, S. W.; Cao, X.; Wang, N.; Ma, L.; Zhu, H. R.; Willander, M.; Jie, Y.; Wang, Z. L. An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing. Adv. Energy Mater. 2017, 7, 1601255.

[23]

Yang, W. X.; Wang, X. L.; Chen, P.; Hu, Y. Q.; Li, L. Z.; Sun, Z. On the controlled adhesive contact and electrical performance of vertical contact-separation mode triboelectric nanogenerators with micro-grooved surfaces. Nano Energy 2021, 85, 106037.

[24]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[25]

Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

[26]

Zhang, Z. L.; Bai, Y.; Xu, L.; Zhao, M.; Shi, M. W.; Wang, Z. L.; Lu, X. M. Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy 2019, 66, 104169.

[27]

Gong, W.; Hou, C. Y.; Zhou, J.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Continuous and scalable manufacture of amphibious energy yarns and textiles. Nat. Commun. 2019, 10, 868.

[28]

Zhang, D. W.; Yang, W. F.; Gong, W.; Ma, W. W.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Abrasion resistant/waterproof stretchable triboelectric yarns based on Fermat spirals. Adv. Mater. 2021, 33, 2100782.

[29]

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

[30]

Ma, L. Y.; Wu, R. H.; Liu, S.; Patil, A.; Gong, H.; Yi, J.; Sheng, F. F.; Zhang, Y. Z.; Wang, J.; Wang, J. et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 2020, 32, 2003897.

[31]

Xiong, J. Q.; Cui, P.; Chen, X. L.; Wang, J. X.; Parida, K.; Lin, M. F.; Lee, P. S. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.

[32]

Shen, S.; Yi, J.; Cheng, R. W.; Ma, L. Y.; Sheng, F. F.; Li, H. M.; Zhang, Y. H.; Ning, C.; Wang, H. B.; Dong, K. et al. Electromagnetic shielding triboelectric yarns for human–machine interacting. Adv. Electron. Mater. 2022, 8, 2101130.

[33]

Zhou, M. J.; Xu, F.; Ma, L. Y.; Luo, Q. L.; Ma, W. W.; Wang, R. W.; Lan, C. T.; Pu, X.; Qin, X. H. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022, 104, 107885.

[34]

Wu, R. H.; Liu, S.; Lin, Z. F.; Zhu, S. H.; Ma, L. Y.; Wang, Z. L. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv. Energy Mater. 2022, 12, 2201288.

[35]

Ma, L. Y.; Zhou, M. J.; Wu, R. H.; Patil, A.; Gong, H.; Zhu, S. H.; Wang, T. T.; Zhang, Y. F.; Shen, S.; Dong, K. et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020, 14, 4716–4726.

[36]

Ma, L. Y.; Wu, R. H.; Patil, A.; Yi, J.; Liu, D.; Fan, X. W.; Sheng, F. F.; Zhang, Y. F.; Liu, S.; Shen, S. et al. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv. Funct. Mater. 2021, 31, 2102963.

[37]

Liu, D.; Zhou, L. L.; Cui, S. N.; Gao, Y. K.; Li, S. X.; Zhao, Z. H.; Yi, Z. Y.; Zou, H. Y.; Fan, Y. J.; Wang, J. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 2022, 13, 6019.

Nano Research
Pages 5540-5548
Cite this article:
Miao Y, Zhou M, Yi J, et al. Woven fabric triboelectric nanogenerators for human–computer interaction and physical health monitoring. Nano Research, 2024, 17(6): 5540-5548. https://doi.org/10.1007/s12274-024-6410-2
Topics:

815

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 22 August 2023
Revised: 02 November 2023
Accepted: 12 December 2023
Published: 29 January 2024
© Tsinghua University Press 2024
Return