Journal Home > Volume 17 , Issue 6

Heterojunction composites with intimate interfaces can shorten the diffusion distance, which leads to a shorter path for photogenerated carriers, thereby increasing photocatalytic activity. Herein, we report the fabrication of Ti3C2-Bi2WO6 (TC-BW) heterojunctions hinged by Bi2Ti2O7 joints via an in situ hydrothermal reaction of Ti3C2 in the presence of Na2WO4 and Bi(NO3)3. The TC-BW was characterized using X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and Raman spectroscopy. TC-BW showed superior photocatalytic activity (productivity over 15TC-WB reaches up to 5.0 mmolreacted BA·gcat.−1·h−1) in the oxidation of benzyl alcohol using light-emitting diode (LED) light, arising from the surface defects and intimate heterojunction interface between the Ti3C2 MXene and Bi2WO6 nanosheets. TC-BW heterojunctions provide an enhanced separation efficiency of photogenerated charges, which in turn yields superior photocatalytic activity. Furthermore, it is well substantiated by density functional theory (DFT) calculations. In summary, this study elucidates the preparation of heterojunction composites with intimate interfaces for highly efficient photooxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of MXene-Bi2WO6 heterojunction by Bi2Ti2O7 hinge for extraordinary LED-light-driven photocatalytic performance

Show Author's information Zhiwen Li2,5,§Liangliang Xu4,§Zaheer Ud Din Babar3Ali Raza3Yifei Zhang1( )Xinrui Gu2Yu-Xin Miao1Zhen Zhao1Gao Li1,2,5( )
Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino, 10, 80138, Italy
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
University of Chinese Academy of Sciences, Beijing 100049, China

§ Zhiwen Li and Liangliang Xu contributed equally to this work.

Abstract

Heterojunction composites with intimate interfaces can shorten the diffusion distance, which leads to a shorter path for photogenerated carriers, thereby increasing photocatalytic activity. Herein, we report the fabrication of Ti3C2-Bi2WO6 (TC-BW) heterojunctions hinged by Bi2Ti2O7 joints via an in situ hydrothermal reaction of Ti3C2 in the presence of Na2WO4 and Bi(NO3)3. The TC-BW was characterized using X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), and Raman spectroscopy. TC-BW showed superior photocatalytic activity (productivity over 15TC-WB reaches up to 5.0 mmolreacted BA·gcat.−1·h−1) in the oxidation of benzyl alcohol using light-emitting diode (LED) light, arising from the surface defects and intimate heterojunction interface between the Ti3C2 MXene and Bi2WO6 nanosheets. TC-BW heterojunctions provide an enhanced separation efficiency of photogenerated charges, which in turn yields superior photocatalytic activity. Furthermore, it is well substantiated by density functional theory (DFT) calculations. In summary, this study elucidates the preparation of heterojunction composites with intimate interfaces for highly efficient photooxidation.

Keywords: heterojunction, MXene-Bi2WO6, LED-light-driven photocatalysis, Bi2Ti2O7, photooxidation

References(52)

[1]

Cai, T.; Wang, L. L.; Liu, Y. T.; Zhang, S. Q.; Dong, W. Y.; Chen, H.; Yi, X. Y.; Yuan, J. L.; Xia, X. N.; Liu, C. B. et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B Environ. 2018, 239, 545–554.

[2]

Li, Y. J.; Deng, X. T.; Tian, J.; Liang, Z. Q.; Cui, H. Z. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 2018, 13, 217–227.

[3]

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

[4]

Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 2018, 11, 688–699.

[5]

Yu, K. F.; Wang, S. M.; Li, Q.; Hou, T. T.; Xin, Y.; He, R.; Zhang, W. H.; Liang, S. Q.; Wang, L. B.; Zhu, W. K. Au atoms doped in Ti3C2T x MXene: Benefiting recovery of oxygen vacancies towards photocatalytic aerobic oxidation. Nano Res. 2022, 15, 2862–2869.

[6]

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

[7]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. Q. Hierarchical utilization of raw Ti3C2T x MXene for fast preparation of various Ti3C2T x MXene derivatives. Nano Res. 2022, 15, 2746–2755.

[8]

Jiang, H. Y.; Zang, C. C.; Zhang, Y. L.; Wang, W. H.; Yang, C. F.; Sun, B.; Shen, Y.; Bian, F. X. 2D MXene-derived Nb2O5/C/Nb2C/g-C3N4heterojunctions for efficient nitrogen photofixation. Catal. Sci. Technol. 2020, 10, 5964–5972.

[9]

Gan, X. R.; Lei, D. Y.; Ye, R. Q.; Zhao, H. M.; Wong, K. Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Res. 2021, 14, 2003–2022.

[10]

Li, Y. J.; Yin, Z. H.; Ji, G. R.; Liang, Z. Q.; Xue, Y. J.; Guo, Y. C.; Tian, J.; Wang, X. Z.; Cui, H. Z. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B Environ. 2019, 246, 12–20.

[11]

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

[12]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

[13]

Foo, J. J.; Ng, S. F.; Ong, W. J. Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res. 2023, 16, 4310–4364.

[14]

Hassan, J. Z.; Raza, A.; Qumar, U.; Li, G. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustain. Mater. Technol. 2022, 33, e00478.

[15]

Lu, X. Y.; Che, W. J.; Hu, X. F.; Wang, Y.; Zhang, A. T.; Deng, F.; Luo, S. L.; Dionysiou, D. D. The facile fabrication of novel visible-light-driven Z-scheme CuInS2/Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem. Eng. J. 2019, 356, 819–829.

[16]

Cheng, M.; Yang, L.; Li, H. Y.; Bai, W.; Xiao, C.; Xie, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Res. 2021, 14, 3365–3371.

[17]

Huang, H. W.; Cao, R. R.; Yu, S. X.; Xu, K.; Hao, W. C.; Wang, Y. G.; Dong, F.; Zhang, T. R.; Zhang, Y. H. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 2017, 219, 526–537.

[18]

Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.

[19]

Low, J.; Zhang, L. Y.; Tong, T.; Shen, B. J.; Yu, J. G. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266.

[20]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[21]

Cui, C.; Guo, R. H.; Xiao, H. Y.; Ren, E. H.; Song, Q. S.; Xiang, C.; Lai, X. X.; Lan, J. W.; Jiang, S. X. Bi2WO6/Nb2CT x MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci. 2020, 505, 144595.

[22]

Fang, H. J.; Pan, Y. S.; Yin, M. Y.; Pan, C. L. Enhanced photocatalytic activity and mechanism of Ti3C2-OH/Bi2WO6: Yb3+, Tm3+ towards degradation of RhB under visible and near infrared light irradiation. Mater. Res. Bull. 2020, 121, 110618.

[23]

Liu, Z. F.; Li, M. J.; Sun, Y. L.; Wang, H. P.; Chen, H. W.; Tian, Y. L.; Wang, H.; Ding, Y. T.; Chen, Z. M. Integrating surface and interface engineering to improve optoelectronic performance and environmental stability of MXene-based heterojunction towards broadband photodetection. Nano Res. 2023, 16, 10148–10155.

[24]

Xiong, Q.; Shi, Q. Q.; Gu, X. R.; Sheng, X. L.; Sun, Y. X.; Shi, H. M.; Xu, L. L.; Li, G. Visible-light S-scheme heterojunction of copper bismuthate quantum dots decorated Titania-spindles for exceptional tetracycline degradation. J. Colloid Interface Sci. 2024, 654, 1365–1377.

[25]

Yang, W.; Lin, X.; Shi, W. J.; Zhang, J. H.; Wang, Y. C.; Deng, J. H.; Zhong, D. C.; Lu, T. B. Ultrathin metal–organic layers/carbon nitride nanosheet composites as 2D/2D heterojunctions for efficient CO2 photoreduction. J. Mater. Chem. A 2023, 11, 2225–2232.

[26]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[27]

Shi, Q. Q.; Zhang, X. Y.; Li, Z. W.; Raza, A.; Li, G. Plasmonic Au nanoparticle of a Au/TiO2-C3N4 heterojunction boosts up photooxidation of benzyl alcohol using LED light. ACS Appl. Mater. Interfaces 2023, 15, 30161–30169.

[28]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[29]

Shi, Q. Q.; Raza, A.; Xu, L. L.; Li, G. Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity. J. Colloid Interface Sci. 2022, 625, 750–760.

[30]

Xing, Z.; Hu, J.; Ma, M.; Lin, H.; An, Y. M.; Liu, Z. H.; Zhang, Y.; Li, J. Y.; Yang, S. H. From one to two: In situ construction of an ultrathin 2D-2D closely bonded heterojunction from a single-phase monolayer nanosheet. J. Am. Chem. Soc. 2019, 141, 19715–19727.

[31]

Hassan, J. Z.; Zaheer, A.; Raza, A.; Li, G. Au-based heterostructure composites for photo and electro catalytic energy conversions. Sustain. Mater. Technol. 2023, 36, e00609.

[32]
Shi, Q. Q.; Zhang, X. Y.; Liu, X.; Xu, L. L.; Liu, B. C.; Zhang, J.; Xu, H.; Han, Z. K.; Li, G. In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible light. Carbon 2022 , 196, 401–409.
[33]

Su, T. M.; Shao, Q.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276.

[34]

Shi, Q. Q.; Qin, Z. X.; Sharma, S.; Li, G. Recent progress in heterogeneous catalysis by atomically and structurally precise metal nanoclusters. Chem. Rec. 2021, 21, 879–892.

[35]

Zhu, Q. H.; Hailili, R.; Xin, Y.; Zhou, Y. T.; Huang, Y.; Pang, X. Z.; Zhang, K.; Robertson, P. K. J.; Bahnemann, D. W.; Wang, C. Y. Efficient full spectrum responsive photocatalytic NO conversion at Bi2Ti2O7: Co-effect of plasmonic Bi and oxygen vacancies. Appl. Catal. B Environ. 2022, 319, 121888.

[36]

Li, J.; Xu, Y.; Yue, W.; Chen, Y.; Du, X. H.; Wang, S. R. Synthesis and study of Bi2Ti2O7/TiO2 composites as efficient visible-light-active photocatalysts in the reduction of aqueous Cr(VI). Chin. Chem. Lett. 2016, 27, 867–870.

[37]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2T x ) MXene. ACS Nano 2016, 10, 9193–9200.

[38]

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[41]

Pronko, P. P.; Thompson, L. J. Comparative study of uniaxial channeling-blocking and single-alignment channeling backscattering-reversibility and defect analysis. Phys. Rev. B 1977, 16, 4–9.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[43]

Chen, Y. D.; Li, Y.; Chen, W.; Xu, W. W.; Han, Z. K.; Waheed, A.; Ye, Z. B.; Li, G.; Baiker, A. Continuous dimethyl carbonate synthesis from CO2 and methanol over Bi x Ce1− x O δ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Res. 2022, 15, 1366–1374.

[44]

Gupta, H. C.; Archana; Luthra, V. Lattice dynamical investigations for Raman and infrared frequencies of Bi2WO6. J. Mol. Struct. 2011, 1005, 53–58.

[45]

Shi, M. L.; Rhimi, B.; Zhang, K.; Xu, J. K.; Bahnemann, D. W.; Wang, C. Y. Visible light-driven novel Bi2Ti2O7/CaTiO3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. Chemosphere 2021, 275, 130083.

[46]

Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xie, A. M.; Guo, Y.; Dai, Y. X.; Zhou, W. Q.; Jana, D.; Xian, Q. M.; Dong, W. et al. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chem. Eng. J. 2021, 403, 126328.

[47]

Shah, S. A.; Habib, T.; Gao, H.; Gao, P.; Sun, W.; Green, M. J.; Radovic, M. Template-free 3D titanium carbide (Ti3C2T x ) MXene particles crumpled by capillary forces. Chem. Commun. 2016, 53, 400–403.

[48]

Tan, C. L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cocatalyst decorated ZnIn2S4 composites for cooperative alcohol conversion and H2 evolution. Appl. Catal. B Environ. 2021, 298, 120541.

[49]

Bao, X. L.; Li, H. L.; Wang, Z. Y.; Tong, F. X.; Liu, M.; Zheng, Z. K.; Wang, P.; Cheng, H. F.; Liu, Y. Y.; Dai, Y. et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Appl. Catal. B Environ. 2021, 286, 119885.

[50]

Jing, K. Q.; Ma, W.; Ren, Y. H.; Xiong, J. H.; Guo, B. B.; Song, Y. J.; Liang, S. J.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B Environ. 2019, 243, 10–18.

[51]

Waheed, A.; Cao, C. H.; Zhang, Y. F.; Zheng, K.; Li, G. Insight into Au/ZnO catalyzed aerobic benzyl alcohol oxidation by modulation-excitation attenuated total reflection IR spectroscopy. New J. Chem. 2022, 46, 5361–5367.

[52]

Guo, Y. B.; Zhou, X. L.; Wang, D. G.; Xu, X. Q.; Xu, Q. Nanomechanical Properties of Ti3C2 Mxene. Langmuir 2019, 35, 14481–14485.

File
12274_2023_6408_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2023
Revised: 11 December 2023
Accepted: 11 December 2023
Published: 29 December 2023
Issue date: June 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We are grateful for the financial support provided by the National Natural Science Foundation of China (Nos. 22172167 and 22272112).

Return