Journal Home > Online First

Carbon nanotube (CNT) fibers have great promise for constructing multifunctional fabrics with high electrical conductivity, good electro-heating ability, excellent flexibility, and a low density. However, the inter-fiber contacts in the fabric greatly reduce these advantages and limit their application. Herein, a simple pressure-fusing method to fabricate single-wall CNT (SWCNT) fiber non-woven fabrics (NWFs) that are composed of interconnected SWCNT fibers with fused joints is reported, which have good flexibility, a low density of 0.46 g/cm3, a high electrical conductivity of 3.7 × 105 S/m, and a record high specific electrical conductivity of 803 (S·m2)/kg. They also showed excellent electrical heating ability, so that a temperature of ~ 160 °C was rapidly reached at a low voltage of 2 V. Combined with their low density, the SWCNT fiber NWFs are promising for use as a heating unit for low temperature battery protection and de-icing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-wall carbon nanotube fiber non-woven fabrics with a high electrothermal heating response

Show Author's information Jiao Xinyu1,2Xu Lele1,2Sun Xinyang1,2Shi Chao1Hou Peng-Xiang1,2( )Liu Chang1,2( )Cheng Hui-Ming1,3
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Carbon nanotube (CNT) fibers have great promise for constructing multifunctional fabrics with high electrical conductivity, good electro-heating ability, excellent flexibility, and a low density. However, the inter-fiber contacts in the fabric greatly reduce these advantages and limit their application. Herein, a simple pressure-fusing method to fabricate single-wall CNT (SWCNT) fiber non-woven fabrics (NWFs) that are composed of interconnected SWCNT fibers with fused joints is reported, which have good flexibility, a low density of 0.46 g/cm3, a high electrical conductivity of 3.7 × 105 S/m, and a record high specific electrical conductivity of 803 (S·m2)/kg. They also showed excellent electrical heating ability, so that a temperature of ~ 160 °C was rapidly reached at a low voltage of 2 V. Combined with their low density, the SWCNT fiber NWFs are promising for use as a heating unit for low temperature battery protection and de-icing applications.

Keywords: carbon nanotube fiber, nonwoven fabrics, fusing, electrothermal heating

References(37)

[1]

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

[2]

Tsentalovich, D. E.; Headrick, R. J.; Mirri, F.; Hao, J. L.; Behabtu, N.; Young, C. C.; Pasquali, M. Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl. Mater. Interfaces 2017, 9, 36189–36198.

[3]

Taylor, L. W.; Dewey, O. S.; Headrick, R. J.; Komatsu, N.; Peraca, N. M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon 2021, 171, 689–694.

[4]

Jiang, C. M.; Saha, A.; Young, C. C.; Hashim, D. P.; Ramirez, C. E.; Ajayan, P. M.; Pasquali, M.; Martí, A. A. Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. ACS Nano 2014, 8, 9107–9112.

[5]

Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

[6]

Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.

[7]

Kim, K. J.; Hyeon, J. S.; Kim, H.; Mun, T. J.; Haines, C. S.; Li, N.; Baughman, R. H.; Kim, S. J. Enhancing the work capacity of electrochemical artificial muscles by coiling plies of twist-released carbon nanotube yarns. ACS Appl. Mater. Interfaces 2019, 11, 13533–13537.

[8]

Lu, Z.; Raad, R.; Safaei, F.; Xi, J. T.; Liu, Z. F.; Foroughi, J. Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. 2019, 6, 138.

[9]

Cai, F. J.; Chen, T.; Peng, H. S. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. J. Mater. Chem. 2012, 22, 14856–14860.

[10]

Ghahremani Honarvar, M.; Latifi, M. Overview of wearable electronics and smart textiles. J. Text. Inst. 2017, 108, 631–652.

[11]

Han, B. J.; Liu, T.; Huang, Z. J.; Chen, D. M.; Zhu, Y. S.; Zhou, C. Y.; Li, Y. S.; Yin, Y. H.; Wu, Z. P. Preparation of flexible carbon nanotube ropes for low-voltage heat generator. Appl. Phys. Lett. 2017, 110, 103902.

[12]

Luo, X. G.; Weng, W.; Liang, Y. X.; Hu, Z. X.; Zhang, Y.; Yang, J. J.; Yang, L. J.; Yang, S. Y.; Zhu, M. F.; Cheng, H. M. Multifunctional fabrics of carbon nanotube fibers. J. Mater. Chem. A 2019, 7, 8790–8797.

[13]

Znidarsic, A.; Kaskela, A.; Laiho, P.; Gaberscek, M.; Ohno, Y.; Nasibulin, A. G.; Kauppinen, E. I.; Hassanien, A. Spatially resolved transport properties of pristine and doped single-walled carbon nanotube networks. J. Phys. Chem. C 2013, 117, 13324–13330.

[14]

Li, Q. W.; Li, Y.; Zhang, X. F.; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zheng, L. X.; Doorn, S. K.; Jia, Q. X.; Peterson, D. E. et al. Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 2007, 19, 3358–3363.

[15]

Li, L. J.; Sun, T. Z.; Lu, S. C.; Chen, Z.; Xu, S. C.; Jian, M. Q.; Zhang, J. Graphene interlocking carbon nanotubes for high-strength and high-conductivity fibers. ACS Appl. Mater. Interfaces 2023, 15, 5701–5708.

[16]

Qiu, L.; Zou, H. Y.; Zhu, N.; Feng, Y. H.; Zhang, X. L.; Zhang, X. X. Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Appl. Therm. Eng. 2018, 141, 913–920.

[17]

Li, Z.; Xu, Z.; Liu, Y. J.; Wang, R.; Gao, C. Multifunctional non-woven fabrics of interfused graphene fibres. Nat. Commun. 2016, 7, 13684.

[18]

Jiao, X. Y.; Shi, C.; Zhao, Y. M.; Xu, L. L.; Liu, S. K.; Hou, P. X.; Liu, C.; Cheng, H. M. Efficient fabrication of high-quality single-walled carbon nanotubes and their macroscopic conductive fibers. ACS Nano 2022, 16, 20263–20271.

[19]

Mukai, K.; Asaka, K.; Wu, X. L.; Morimoto, T.; Okazaki, T.; Saito, T.; Yumura, M. Wet spinning of continuous polymer-free carbon-nanotube fibers with high electrical conductivity and strength. Appl. Phys. Express 2016, 9, 055101.

[20]

Steinmetz, J.; Glerup, M.; Paillet, M.; Bernier, P.; Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon 2005, 43, 2397–2400.

[21]

Kim, S. G.; Choi, G. M.; Jeong, H. D.; Lee, D.; Kim, S.; Ryu, K. H.; Lee, S.; Kim, J.; Hwang, J. Y.; Kim, N. D. et al. Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers. Carbon 2022, 196, 59–69.

[22]

Wang, D.; Song, P. C.; Liu, C. H.; Wu, W.; Fan, S. S. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 2008, 19, 075609.

[23]

Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

[24]

Zhang, M.; Wang, Y. L.; Huang, L.; Xu, Z. P.; Li, C.; Shi, G. Q. Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv. Mater. 2015, 27, 6708–6713.

[25]

Liang, Q. Z.; Yao, X. X.; Wang, W.; Liu, Y.; Wong, C. P. A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials. ACS Nano 2011, 5, 2392–2401.

[26]

Xin, G. Q.; Sun, H. T.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 2014, 26, 4521–4526.

[27]

Aouraghe, M. A.; Xu, F. J.; Liu, X. H.; Qiu, Y. P. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos. Sci. Technol. 2019, 183, 107824.

[28]

Zhang, Q.; Ren, Y. F.; Wang, Z. G.; Chen, X. L.; Portilla, L.; Sun, L. T.; Zhang, D. Y.; Zhao, J. W. Preparation of large-area, high-performance single-walled carbon nanotube (SWCNT)-based heater films by roll-to-roll gravure printing. Flex. Print. Electron. 2022, 7, 015007.

[29]

Zhang, Z.; Dong, H. H.; Liao, Y. P.; Ding, E. X.; Lv, L. H.; Li, H.; Yan, J.; Kauppinen, E. I. Dry-transferred single-walled carbon nanotube thin films for flexible and transparent heaters. Surf. Interfaces 2022, 31, 101992.

[30]

Jang, H. S.; Jeon, S. K.; Nahm, S. H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 2011, 49, 111–116.

[31]

Yoon, Y. H.; Song, J. W.; Kim, D.; Kim, J.; Park, J. K.; Oh, S. K.; Han, C. S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287.

[32]

Zhou, B.; Han, X. Q.; Li, L.; Feng, Y. Z.; Fang, T.; Zheng, G. Q.; Wang, B.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film. Compos. Sci. Technol. 2019, 183, 107796.

[33]

Jia, S. L.; Geng, H. Z.; Wang, L. D.; Tian, Y.; Xu, C. X.; Shi, P. P.; Gu, Z. Z.; Yuan, X. S.; Jing, L. C.; Guo, Z. Y. et al. Carbon nanotube-based flexible electrothermal film heaters with a high heating rate. Roy. Soc. Open Sci. 2018, 5, 172072.

[34]

Jung, D.; Han, M.; Lee, G. S. Flexible transparent conductive heater using multiwalled carbon nanotube sheet. J. Vac. Sci. Technol. B 2014, 32, 04E105.

[35]

Jung, D.; Kim, D.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Transparent film heaters using multi-walled carbon nanotube sheets. Sens. Actuators A 2013, 199, 176–180.

[36]

Kang, T. J.; Kim, T.; Seo, S. M.; Park, Y. J.; Kim, Y. H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 2011, 49, 1087–1093.

[37]

Kim, D.; Lee, H. C.; Woo, J. Y.; Han, C. S. Thermal behavior of transparent film heaters made of single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 5817–5821.

File
6407_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2023
Revised: 03 December 2023
Accepted: 10 December 2023
Published: 15 January 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFA1203302), the National Natural Science Foundation of China (Nos. 52130209, 52188101, and 52072375), Liaoning Revitalization Talents Program (No. XLYC2002037), and Basic Research Project of Natural Science Foundation of Shandong Province, China (No. ZR2019ZD49).

Return