Journal Home > Volume 17 , Issue 6

Pyrene-4,5,9,10-tetraone (PTO), with a high theoretical capacity of 408 mAh·g−1, is a promising candidate for rechargeable aqueous zinc-ion batteries (RAZIBs), but its zincated products during discharge process suffer from high solubility in electrolytes. Herein, a β-ketoenamine-linked two-dimensional (2D) covalent organic framework (COF) based on a 2,7-diaminopyrene-4,5,9,10-tetraone (4KT-BD) monomer and a 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp) node (4KT-Tp-COF) is synthesized to address the above issue. The well-designed 4KT-Tp-COF displays low solubility in 3 M Zn(CF3SO3)2 owing to the favorable π–π stacking as well as extended structure. Besides, the ingenious structural design of the active molecule and the long-range ordered nano-channels alter the intramolecular electron distribution, which facilitates the ionic diffusion. Consequently, the 4KT-Tp-COF cathode exhibits a stable capacity of 181 mAh·g−1 at 0.2 A·g−1, superior rate capability of 139 mAh·g−1 at 20 A·g−1, and a long lifetime of 1000 cycles without capacity loss at 30 A·g−1. Even at a low temperature of −20 °C, the electrode also performs an ultralong cycling life of 9000 cycles with a capacity of 106 mAh·g−1 at 5 A·g−1. The comprehensive characterizations of ex-situ analyses together with the theoretical calculations validate that the groups of C=O can contribute highly accessible redox-active sites for Zn2+ storage. The ultra-stable 4KT-Tp-COF cathode provides important insights for designing robust organic electrodes for sustainable and large-scale electrochemical energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A solubility limited pyrene-4,5,9,10-tetraone-based covalent organic framework for high-performance aqueous zinc-organic batteries

Show Author's information Min Cheng1,2Shibing Zheng1,2Tianjiang Sun1,2Diantao Li1,2Weijia Zhang1,2Zhengtai Zha1,2Qiong Sun1,2Jing Tian1,2Kai Zhang1,2( )Zhanliang Tao1,2( )
Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin 300071, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Abstract

Pyrene-4,5,9,10-tetraone (PTO), with a high theoretical capacity of 408 mAh·g−1, is a promising candidate for rechargeable aqueous zinc-ion batteries (RAZIBs), but its zincated products during discharge process suffer from high solubility in electrolytes. Herein, a β-ketoenamine-linked two-dimensional (2D) covalent organic framework (COF) based on a 2,7-diaminopyrene-4,5,9,10-tetraone (4KT-BD) monomer and a 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp) node (4KT-Tp-COF) is synthesized to address the above issue. The well-designed 4KT-Tp-COF displays low solubility in 3 M Zn(CF3SO3)2 owing to the favorable π–π stacking as well as extended structure. Besides, the ingenious structural design of the active molecule and the long-range ordered nano-channels alter the intramolecular electron distribution, which facilitates the ionic diffusion. Consequently, the 4KT-Tp-COF cathode exhibits a stable capacity of 181 mAh·g−1 at 0.2 A·g−1, superior rate capability of 139 mAh·g−1 at 20 A·g−1, and a long lifetime of 1000 cycles without capacity loss at 30 A·g−1. Even at a low temperature of −20 °C, the electrode also performs an ultralong cycling life of 9000 cycles with a capacity of 106 mAh·g−1 at 5 A·g−1. The comprehensive characterizations of ex-situ analyses together with the theoretical calculations validate that the groups of C=O can contribute highly accessible redox-active sites for Zn2+ storage. The ultra-stable 4KT-Tp-COF cathode provides important insights for designing robust organic electrodes for sustainable and large-scale electrochemical energy storage.

Keywords: covalent organic framework, 5, solubility limited, zinc batteries, pyrene-4, 9, 10-tetraone

References(52)

[1]

Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.

[2]

Yan, X. L.; Wang, F. X.; Su, X.; Ren, J. Y.; Qi, M. L.; Bao, P. L.; Chen, W. H.; Peng, C. X.; Chen, L. A redox-active covalent organic framework with highly accessible aniline-fused quinonoid units affords efficient proton charge storage. Adv. Mater. 2023, 35, 2305037.

[3]

Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

[4]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[5]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[6]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[7]

Geng, H. B.; Cheng, M.; Wang, B.; Yang, Y.; Zhang, Y. F.; Li, C. C. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 2020, 30, 1907684.

[8]

Chuai, M.; Yang, J. L.; Wang, M. M.; Yuan, Y.; Liu, Z. C.; Xu, Y.; Yin, Y. C.; Sun, J. F.; Zheng, X. H.; Chen, N. et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 2021, 1, 178–185.

[9]

Zeng, Y. X.; Lu, X. F.; Zhang, S. L.; Luan, D. Y.; Li, S.; Lou, X. W. Construction of Co-Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 22189–22194.

[10]

Kwon, G.; Ko, Y.; Kim, Y.; Kim, K.; Kang, K. Versatile redox-active organic materials for rechargeable energy storage. Acc. Chem. Res. 2021, 54, 4423–4433.

[11]

Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78–81.

[12]

Gao, P.; Yuan, P.; Yue, T.; Zhao, X. L.; Shen, B. X. Recycling metal resources from various spent batteries to prepare electrode materials for energy storage: A critical review. J. Energy Storage 2023, 68, 107652.

[13]

Zheng, S. B.; Shi, D. J.; Yan, D.; Wang, Q. R.; Sun, T. J.; Ma, T.; Li, L.; He, D.; Tao, Z. L.; Chen, J. Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202117511.

[14]

Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

[15]

McAllister, B. T.; Kyne, L. T.; Schon, T. B.; Seferos, D. S. Potential for disruption with organic magnesium-ion batteries. Joule 2019, 3, 620–624.

[16]

Lin, L.; Lin. Z. R.; Zhu, J. Q.; Wang, K.; Wu, W. L.; Qiu, T.; Sun, X. Q. A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 2023, 16, 89–96.

[17]
Li, S. L.; Shang, J.; Li, M. L.; Xu, M. W.; Zeng, F. B.; Yin, H.; Tang, Y. B.; Han, C. P.; Cheng, H. M. Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater., in press, DOI: 10.1002/adma.202207115.
[18]

Zhao, Q.; Huang, W. W.; Luo, Z. Q.; Liu, L. J.; Lu, Y.; Li, Y. X.; Li, L.; Hu, J. Y.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761.

[19]

Wang, H. G.; Wu, Q.; Cheng, L. Q.; Zhu, G. S. The emerging aqueous zinc-organic battery. Coord. Chem. Rev. 2022, 472, 214772.

[20]

Tang, M. Y.; Zhu, Q. N.; Hu, P. F.; Jiang, L.; Liu, R. Y.; Wang, J. W.; Cheng, L. W.; Zhang, X. H.; Chen, W. X.; Wang, H. Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 2021, 31, 2102011.

[21]

Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. Q. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem., Int. Edit. 2018, 57, 16359–16363.

[22]

Guo, Z. W.; Ma, Y. Y.; Dong, X. L.; Huang, J. H.; Wang, Y. G.; Xia, Y. Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem., Int. Ed. 2018, 57, 11737–11741.

[23]

Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841–848.

[24]

Li, Z. H.; Tan, J.; Zhu, X. D.; Xie, S. J.; Fang, H. Y.; Ye, M. X.; Shen, J. F. High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 2022, 51, 294–305.

[25]

Singh, V.; Kim, J.; Kang, B.; Moon, J.; Kim, S.; Kim, W. Y.; Byon, H. R. Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries. Adv. Energy Mater. 2021, 11, 2003735.

[26]

Zhu, D. Y.; Xu, G. Y.; Barnes, M.; Li, Y. L.; Tseng, C. P.; Zhang, Z. Q.; Zhang, J. J.; Zhu, Y. F.; Khalil, S.; Rahman, M. M. et al. Covalent organic frameworks for batteries. Adv. Funct. Mater. 2021, 31, 2100505.

[27]

Bi, S.; Thiruvengadam, P.; Wei, S. C.; Zhang, W. B.; Zhang, F.; Gao, L. S.; Xu, J. S.; Wu, D. Q.; Chen, J. S.; Zhang, F. Vinylene-bridged two-dimensional covalent organic frameworks via knoevenagel condensation of tricyanomesitylene. J. Am. Chem. Soc. 2020, 142, 11893–11900.

[28]

Wang, W. X.; Kale, V. S.; Cao, Z.; Kandambeth, S.; Zhang, W. L.; Ming, J.; Parvatkar, P. T.; Abou-Hamad, E.; Shekhah, O.; Cavallo, L. et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 2020, 5, 2256–2264.

[29]

Kushwaha, R.; Jain, C.; Shekhar, P.; Rase, D.; Illathvalappil, R.; Mekan, D.; Camellus, A.; Vinod, C. P.; Vaidhyanathan, R. Made to measure squaramide COF cathode for zinc dual-ion battery with enriched storage via redox electrolyte. Adv. Energy Mater. 2023, 13, 2301049.

[30]

Li, X. L.; Cai, S. L.; Sun, B.; Yang, C. Q.; Zhang, J.; Liu, Y. Chemically robust covalent organic frameworks: Progress and perspective. Matter 2020, 3, 1507–1540.

[31]

Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A. P. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 2021, 10, 2002090.

[32]

Hu, J.; Zhang, D.; Harris, F. W. Ruthenium(III) chloride catalyzed oxidation of pyrene and 2,7-disubstitued pyrenes: An efficient, one-step synthesis of pyrene-4,5-diones and pyrene-4,5,9,10-tetraones. J. Org. Chem. 2005, 70, 707–708.

[33]

Li, Q.; Wang, H. D.; Wang, H. G.; Si, Z. J.; Li, C. P.; Bai, J. A self-polymerized nitro-substituted conjugated carbonyl compound as high-performance cathode for lithium-organic batteries. ChemSusChem 2020, 13, 2449–2456.

[34]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, USA, 2016.
[35]

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

[36]

DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824.

[37]

Xu, Y. P.; Cai, P. W.; Chen, K.; Chen, Q. S.; Wen, Z. H.; Chen, L. Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem., Int. Ed. 2023, 62, e202215584.

[38]

Li, L.; Wang, Y. J.; Gong, W. B.; Lin, M. J.; Wei, L.; Li, Q. W.; Zhang, Q. C.; Sun, L. T. Building stable small molecule imide cathodes toward ultralong-life aqueous zinc-organic batteries. Chem. Eng. J. 2023, 465, 142824.

[39]

Zhang, Y.; Zhao, C. C.; Li, Z.; Wang, Y. R.; Yan, L.; Ma, J.; Wang, Y. G. Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc-organic batteries. Energy Storage Mater. 2022, 52, 386–394.

[40]

Wang, Y. R.; Wang, C. X.; Ni, Z. G.; Gu, Y. M.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Bin, D.; Ma, J.; Wang, Y. G. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv. Mater. 2020, 32, 2000338.

[41]

Wang, N.; Guo, Z. W.; Ni, Z. G.; Xu, J.; Qiu, X.; Ma, J.; Wei, P.; Wang, Y. G. Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries. Angew. Chem., Int. Ed. 2021, 60, 20826–20832.

[42]

Zhang, R. Y.; Xu, H.; Luo, D. R.; Chi, J. X.; Fan, Z. J.; Dou, H.; Zhang, X. G. Noncovalent interactions engineering construct the fast-kinetics organic cathode for room/low-temperature aqueous zinc-ion battery. Chem. Eng. J. 2023, 458, 141336.

[43]

Nam, K. W.; Kim, H.; Beldjoudi, Y.; Kwon, T. W.; Kim, D. J.; Stoddart, J. F. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 2020, 142, 2541–2548.

[44]

Yang, K.; Hu, L.; Wang, Y.; Xia, J. X.; Sun, M. X.; Zhang, Y. P.; Gou, C.; Jia, C. Y. Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A. 2022, 10, 12532–12543.

[45]

Jiang, H. D.; Zhu, Y. C.; Ye, X. K.; Yue, Z. Y.; Wang, L. H.; Xia, J. X.; Xie, J. L.; Jia, C. Y. Graphene hydrogel film adsorbed with redox-active molecule toward energy storage device with improved energy density and unfading superior rate capability. ACS Sustain. Chem. Eng. 2020, 8, 9896–9905.

[46]

Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.

[47]

Tian, J.; Cao, D. P.; Zhou, X. J.; Hu, J. L.; Huang, M. S.; Li, C. L. High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte. ACS Nano 2018, 12, 3424–3435.

[48]

Fang, L.; Zhou, L. M.; Cui, L. M.; Jiao, P. X.; An, Q. Y.; Zhang, K. Sulfur-linked carbonyl polymer as a robust organic cathode for rapid and durable aluminum batteries. J. Energy Chem. 2021, 63, 320–327.

[49]

Chen, Y.; Li, J. Y.; Zhu, Q.; Fan, K.; Cao, Y. Q.; Zhang, G. Q.; Zhang, C. Y.; Gao, Y. B.; Zou, J. C.; Zhai, T. Y. et al. Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202116289.

[50]

Sun, T. J.; Yi, Z. H.; Zhang, W. J.; Nian, Q. S.; Fan, H. J.; Tao, Z. L. Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv. Funct. Mater. 2023, 33, 2306675.

[51]

Sun, Q. Q.; Sun, T.; Du, J. Y.; Li, K.; Xie, H. M.; Huang, G.; Zhang, X. B. A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 2023, 35, 2301088.

[52]

Ye, F.; Liu, Q.; Dong, H. L.; Guan, K. L.; Chen, Z. Y.; Ju, N.; Hu, L. F. Organic zinc-ion battery: Planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem., Int. Ed. 2022, 61, e202214244.

File
12274_2023_6401_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 October 2023
Revised: 03 December 2023
Accepted: 07 December 2023
Published: 15 January 2024
Issue date: June 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 22279063 and 52001170), the Fundamental Research Funds for the Central Universities, and Tianjin Natural Science Foundation (No. 22JCYBJC00590). The work was carried out at Shanxi Supercomputing Center of China, and the calculations were performed on TianHe-2. K. Z. would like to acknowledge for the National Key Research and Development Program of China (No. 2022YFB2402200), the National Natural Science Foundation of China (Nos. 22121005, 22005155, and 52072186), and the Fundamental Research Funds for the Central Universities (Nos. 63233017, 63231002, and 63231198). J. T. would like to acknowledge for the Development Project of Large-scale Instrument Experiment Technology of Nankai University (No. 23NKSYJS02).

Return