Journal Home > Online First

NiFe-based electrocatalysts will experience dynamical surface reconstruction during oxygen evolution reaction (OER) process, and the derived metal (oxy)hydroxide hybrids on the surface have been considered as the actual active species for OER. Tremendous efforts have been dedicated to understanding the surface reconstruction, but there is rare research on recognizing the origin of improved performance derived from anion species of substrate. Herein, the OER electrocatalytic characteristics were tuned with different anions in NiFe-based catalyst, using NiFe-based oxides/nitride/sulfide/selenides/phosphides (NiFeX, X = O, N, S, Se, and P) as the model materials. The combination of X-ray photoelectronic spectroscopy, electrochemical tests, operando spectroscopic characterizations, and density functional theory (DFT) calculations, reveals that anion with lower electronegativity in NiFe-based catalyst leads to higher conductivity and delayed valence transition of Ni sites, as well as optimized adsorption behavior towards oxygen intermediates, contributing to enhanced OER performance. Accordingly, NiFeP electrocatalyst demonstrates an ultralow overpotential of 265 mV at 20 mA·cm−2 for OER, as well as long-term stability. This work not only offers further insights into the effect of anionic electronegativity on the intrinsic OER electrocatalytic properties of NiFe-based electrocatalyst but also provides guide to design efficient non-noble metal-based electrocatalysts for water oxidation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Modulating redox transition kinetics by anion regulation in Ni-Fe-X (X = O, S, Se, N, and P) electrocatalyst for efficient water oxidation

Show Author's information Liting Wei1,2Kaini Zhang1Rui Zhao1Lei Zhang1Yan Zhang1Suyi Yang1Jinzhan Su1( )
International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, China

Abstract

NiFe-based electrocatalysts will experience dynamical surface reconstruction during oxygen evolution reaction (OER) process, and the derived metal (oxy)hydroxide hybrids on the surface have been considered as the actual active species for OER. Tremendous efforts have been dedicated to understanding the surface reconstruction, but there is rare research on recognizing the origin of improved performance derived from anion species of substrate. Herein, the OER electrocatalytic characteristics were tuned with different anions in NiFe-based catalyst, using NiFe-based oxides/nitride/sulfide/selenides/phosphides (NiFeX, X = O, N, S, Se, and P) as the model materials. The combination of X-ray photoelectronic spectroscopy, electrochemical tests, operando spectroscopic characterizations, and density functional theory (DFT) calculations, reveals that anion with lower electronegativity in NiFe-based catalyst leads to higher conductivity and delayed valence transition of Ni sites, as well as optimized adsorption behavior towards oxygen intermediates, contributing to enhanced OER performance. Accordingly, NiFeP electrocatalyst demonstrates an ultralow overpotential of 265 mV at 20 mA·cm−2 for OER, as well as long-term stability. This work not only offers further insights into the effect of anionic electronegativity on the intrinsic OER electrocatalytic properties of NiFe-based electrocatalyst but also provides guide to design efficient non-noble metal-based electrocatalysts for water oxidation.

Keywords: oxygen evolution reaction (OER), anion species, electronegativity, valence transition

References(58)

[1]

Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J. W.; Lee, J. S. Toward practical solar hydrogen production—An artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971.

[2]

Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S. H.; Teng, C. P.; Han, M. Y. Recent progress in energy-driven water splitting. Adv. Sci. (Weinh.) 2017, 4, 1600337.

[3]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[4]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[5]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[6]

Wei, L. T.; Du, M. Y.; Zhao, R.; Lv, F.; Li, L. B.; Zhang, L.; Zhou, D.; Su, J. Z. High-valence Mo doping for highly promoted water oxidation of NiFe (oxy)hydroxide. J. Mater. Chem. A 2022, 10, 23790–23798.

[7]

Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.

[8]

Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208.

[9]

Wei, L. T.; Du, M. Y.; Zhao, R.; Zhang, Y.; Zhang, L.; Li, L. B.; Yang, S. Y.; Su, J. Z. Active sites engineering on FeNi alloy/Cr3C2 heterostructure for superior oxygen evolution activity. J. Colloid Interface Sci. 2024, 653, 1075–1084.

[10]

Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

[11]

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

[12]

He, Z. X.; Liu, X. K.; Zhang, M. H.; Guo, L.; Ajmal, M.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Zou, J. J. Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. J. Energy Chem. 2023, 85, 570–580.

[13]

Zhang, R. R.; Guo, B. B.; Pan, L.; Huang, Z. F.; Shi, C. X.; Zhang, X. W.; Zou, J. J. Metal-oxoacid-mediated oxyhydroxide with proton acceptor to break adsorption energy scaling relation for efficient oxygen evolution. J. Energy Chem. 2023, 80, 594–602.

[14]

Chen, S. Y.; Zhang, S. S.; Guo, L.; Pan, L.; Shi, C. X.; Zhang, X. W.; Huang, Z. F.; Yang, G. D.; Zou, J. J. Reconstructed Ir-O-Mo species with strong Brønsted acidity for acidic water oxidation. Nat. Commun. 2023, 14, 4127.

[15]

Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.

[16]

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

[17]

Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380–5387.

[18]

Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3 d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

[19]

Yu, J.; Guo, Y.; She, S.; Miao, S.; Ni, M.; Zhou, W.; Liu, M.; Shao, Z. Bigger is surprisingly better: Agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1800047.

[20]

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

[21]

Li, B. Q.; Zhang, S. Y.; Tang, C.; Cui, X. Y.; Zhang, Q. Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation. Small 2017, 13, 1700610.

[22]

Zheng, X. R.; Cao, Y. H.; Wu, Z.; Ding, W. L.; Xue, T.; Wang, J. J.; Chen, Z. L.; Han, X. P.; Deng, Y. D.; Hu, W. B. Rational design and spontaneous sulfurization of NiCo-(oxy)hydroxysulfides nanosheets with modulated local electronic configuration for enhancing oxygen electrocatalysis. Adv. Energy Mater. 2022, 12, 2103275.

[23]

Shi, Y. M.; Du, W.; Zhou, W.; Wang, C. H.; Lu, S. S.; Lu, S. Y.; Zhang, B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22470–22474.

[24]

Du, C.; Li, P.; Zhuang, Z. H.; Fang, Z. Y.; He, S. J.; Feng, L. G.; Chen, W. Highly porous nanostructures: Rational fabrication and promising application in energy electrocatalysis. Coord. Chem. Rev. 2022, 466, 214604.

[25]

Yan, P.; Liu, Q.; Zhang, H.; Qiu, L. C.; Wu, H. B.; Yu, X. Y. Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15586–15594.

[26]

Feng, Y.; Yu, X. Y.; Paik, U. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 2016, 52, 6269–6272.

[27]

Yu, X. Y.; Yu, L.; Wu, H. B.; Lou, X. W. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. 2015, 127, 5421–5425.

[28]

Zhang, G. X.; Li, Y. L.; Xiao, X.; Shan, Y.; Bai, Y.; Xue, H. G.; Pang, H.; Tian, Z. Q.; Xu, Q. In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021, 21, 3016–3025

[29]

Su, X. Z.; Wang, Y.; Zhou, J.; Gu, S. Q.; Li, J.; Zhang, S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 11286–11292.

[30]

Zhang, W.; Zhao, Y. Y.; Malgras, V.; Ji, Q. M.; Jiang, D. M.; Qi, R. J.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J. S. et al. Synthesis of monocrystalline nanoframes of prussian blue analogues by controlled preferential etching. Angew. Chem., Int. Ed. 2016, 55, 8228–8234.

[31]

Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

[32]

Ma, Y. M.; He, Z. D.; Wu, Z. F.; Zhang, B.; Zhang, Y.; Ding, S. J.; Xiao, C. H. Galvanic-replacement mediated synthesis of copper-nickel nitrides as electrocatalyst for hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 24850–24858.

[33]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[34]

He, W. J.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q. Y.; Liu, H.; Zhao, J. L.; Xin, H. L. Super-hydrophilic microporous Ni(OH) x /Ni3S2 heterostructure electrocatalyst for large-current-density hydrogen evolution. Small 2023, 19, 2205719.

[35]

Nai, J. W.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W. Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv. Mater. 2017, 29, 1703870.

[36]

Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

[37]

Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.

[38]

Qu, D. Y.; Wang, G. W.; Kafle, J.; Harris, J.; Crain, L.; Jin, Z. H.; Zheng, D. Electrochemical Impedance and its applications in energy-storage systems. Small Methods 2018, 2, 1700342.

[39]

Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

[40]

Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Retracted: Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a Zinc-Air battery. Adv. Mater. 2018, 30, 1705796.

[41]

Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[42]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[43]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[44]

Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225–244.

[45]

Zhou, M.; Weng, Q. H.; Zhang, X. Y.; Wang, X.; Xue, Y. M.; Zeng, X. H.; Bando, Y.; Golberg, D. In situ electrochemical formation of core-shell nickel-iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. J. Mater. Chem. A 2017, 5, 4335–4342.

[46]

Dastafkan, K.; Wang, S. H.; Rong, C. L.; Meyer, Q.; Li, Y. B.; Zhang, Q.; Zhao, C. Cosynergistic molybdate oxo-anionic modification of FeNi-based electrocatalysts for efficient oxygen evolution reaction. Adv. Funct. Mater. 2022, 32, 2107342.

[47]

Wang, Y.; Liu, B. R.; Shen, X. J.; Arandiyan, H.; Zhao, T. W.; Li, Y. B.; Garbrecht, M.; Su, Z.; Han, L.; Tricoli, A. et al. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2003759.

[48]

Luo, R. P.; Qian, Z. Y.; Xing, L. X.; Du, C. Y.; Yin, G. P.; Zhao, S. L.; Du, L. Re-looking into the active moieties of metal X-ides (X- = phosph-, sulf-, nitr-, and carb-) toward oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2102918.

[49]

Wang, C. S.; Yan, B.; Chen, Z. Z.; You, B.; Liao, T.; Zhang, Q.; Lu, Y. Z.; Jiang, S. H.; He, S. J. Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 25773–25795.

[50]

Wang, C. S.; Zhang, Q.; Yan, B.; You, B.; Zheng, J. J.; Feng, L.; Zhang, C. M.; Jiang, S. H.; Chen, W.; He, S. J. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 2023, 15, 52.

[51]

Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ Sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

[52]

Sun, Y.; Wu, J.; Zhang, Z.; Liao, Q. L.; Zhang, S. C.; Wang, X.; Xie, Y.; Ma, K. K.; Kang, Z.; Zhang, Y. Phase reconfiguration of multivalent nickel sulfides in hydrogen evolution. Energy Environ. Sci. 2022, 15, 633–644.

[53]

Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

[54]

Yang, H. Y.; Guo, P. F.; Wang, R. R.; Chen, Z. L.; Xu, H. B.; Pan, H. G.; Sun, D. L.; Fang, F.; Wu, R. B. Sequential phase conversion-induced phosphides heteronanorod arrays for superior hydrogen evolution performance to Pt in wide pH media. Adv. Mater. 2022, 34, 2107548.

[55]

Kosteck, R.; McLarnon, F. Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes: I. Pure nickel hydroxide. J. Electrochem. Soc. 1997, 144, 485–493.

[56]

Diallo, A.; Beye, A. C.; Doyle, T. B.; Park, E.; Maaza, M. Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: Physical properties. Green Chem. Lett. Rev. 2015, 8, 30–36.

[57]

Bo, X.; Hocking, R. K.; Zhou, S.; Li, Y. B.; Chen, X. J.; Zhuang, J. C.; Du, Y.; Zhao, C. Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy Environ. Sci. 2020, 13, 4225–4237.

[58]

Görlin, M.; Chernev, P.; Ferreira de Araújo, J.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

File
6400_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2023
Revised: 04 December 2023
Accepted: 07 December 2023
Published: 07 February 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51976169).

Return