Journal Home > Volume 17 , Issue 5

With many merits such as facile synthesis, economy, and relatively high theoretical capacity, Prussian blue analogs (PBAs) are considered promising cathode materials for sodium-ion batteries (SIBs). However, their practical applications still suffer from a low actual specific capacity and inferior stability owing to the imperfect crystallinity, irreversible phase transition, and low intrinsic conductivity. Herein, a surface-modification technique for vapor-phase molecular self-assembly was developed to prepare Fe-based PBAs, specifically sodium iron hexacyanoferrate (NaFeHCF), with a uniform conductive polymer protective layer of polypyrrole (PPy) on the surface, resulting in NaFeHCF@PPy. The incorporation of a PPy protective layer not only improves the electronic conductivity of NaFeHCF@PPy, but also effectively mitigates the dissolution of Fe-ions during cycling. Specifically, this advanced vapor-phase technique avoids Fe2+ oxidation and Na+ loss during liquid-phase surface modification. The NaFeHCF@PPy exhibited a remarkably enhanced cycling performance, with capacity retentions of 85.6% and 69.1% over 500 and 1000 cycles, respectively, at 200 mA/g, along with a superior rate performance up to 5 A/g (fast kinetics). Additionally, by adopting this strategy for Mn-based PBAs (NaMnHCF@PPy), we further demonstrated the universality of this method for PBA cathodes in SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced conductivity and stability of Prussian blue cathodes in sodium-ion batteries by surface vapor-phase molecular self-assembly

Show Author's information Tao Yuan,§Xiaopan Fu,§Yuan WangMingjie LiShuixin XiaYuepeng PangShiyou Zheng( )
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

§ Tao Yuan and Xiaopan Fu contributed equally to this work.

Abstract

With many merits such as facile synthesis, economy, and relatively high theoretical capacity, Prussian blue analogs (PBAs) are considered promising cathode materials for sodium-ion batteries (SIBs). However, their practical applications still suffer from a low actual specific capacity and inferior stability owing to the imperfect crystallinity, irreversible phase transition, and low intrinsic conductivity. Herein, a surface-modification technique for vapor-phase molecular self-assembly was developed to prepare Fe-based PBAs, specifically sodium iron hexacyanoferrate (NaFeHCF), with a uniform conductive polymer protective layer of polypyrrole (PPy) on the surface, resulting in NaFeHCF@PPy. The incorporation of a PPy protective layer not only improves the electronic conductivity of NaFeHCF@PPy, but also effectively mitigates the dissolution of Fe-ions during cycling. Specifically, this advanced vapor-phase technique avoids Fe2+ oxidation and Na+ loss during liquid-phase surface modification. The NaFeHCF@PPy exhibited a remarkably enhanced cycling performance, with capacity retentions of 85.6% and 69.1% over 500 and 1000 cycles, respectively, at 200 mA/g, along with a superior rate performance up to 5 A/g (fast kinetics). Additionally, by adopting this strategy for Mn-based PBAs (NaMnHCF@PPy), we further demonstrated the universality of this method for PBA cathodes in SIBs.

Keywords: surface modification, cathode, sodium-ion battery, Prussian blue analogs, vapor-phase molecular self-assembly

References(64)

[1]

Sui, Y.; Liu, C. F.; Masse, R. C.; Neale, Z. G.; Atif, M.; AlSalhi, M.; Cao, G. Z. Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 2020, 25, 1–32.

[2]

Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

[3]

Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942–3969.

[4]

Luo, S. N.; Yuan, T.; Soule, L.; Ruan, J. F.; Zhao, Y. H.; Sun, D. L.; Yang, J. H.; Liu, M. L.; Zheng, S. L. Enhanced ionic/electronic transport in Nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 2019, 30, 1908309.

[5]

Zhou, A. J.; Cheng, W. J.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W. X.; Gao, H. C.; Xue, L. G.; Li, J. Z. Hexacyanoferrate-type Prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2020, 11, 2000943.

[6]

Chen, J. W.; Adit, G.; Li, L.; Zhang, Y. X.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy Environ. Mater. 2023, 6, e12633.

[7]

Li, M. D.; Ding, Y. X.; Sun, Y.; Ren, Y. J.; Yang, J. Z.; Yin, B. S.; Li, H.; Zhang, S. W.; Ma, T. Y. Emerging rechargeable aqueous magnesium ion battery. Mate. Rep. Energ. 2022, 2, 100161.

[8]

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

[9]

Hou, D. W.; Xia, D. W.; Gabriel, E.; Russell, J. A.; Graff, K.; Ren, Y.; Sun, C. J.; Lin, F.; Liu, Y. Z.; Xiong, H. Spatial and temporal analysis of sodium-ion batteries. ACS Energy Lett. 2021, 6, 4023–4054.

[10]

Li, Y. Q.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries. Chin. Phys. B 2020, 29, 048201.

[11]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[12]

Fatima, H.; Zhong, Y. J.; Wu, H. W.; Shao, Z. P. Recent advances in functional oxides for high energy density sodium-ion batteries. Mater. Rep. Energ. 2021, 1, 100022.

[13]

Yuan, T.; Sun, Y. Y.; Li, S. Q.; Che, H. Y.; Zheng, Q. F.; Ni, Y. J.; Zhang, Y. X.; Zou, J.; Zang, X. X.; Wei, S. H. et al. Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration. Nano Res. 2023, 16, 6890–6902.

[14]

Zhang, H.; Gao, Y.; Liu, X. H.; Zhou, L. F.; Li, J. Y.; Xiao, Y.; Peng, J.; Wang, J. Z.; Chou, S. L. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy Mater. 2023, 13, 2300149.

[15]

Liu, X. H.; Peng, J.; Lai, W. H.; Gao, Y.; Zhang, H.; Li, L.; Qiao, Y.; Chou, S. L. Advanced characterization techniques paving the way for commercialization of low-cost Prussian blue analog cathodes. Adv. Funct. Mater. 2022, 32, 2108616.

[16]

Sun, J. G.; Ye, H. L.; Oh, J. A. S.; Sun, Y.; Plewa, A.; Wang, Y. M.; Wu, T.; Zeng, K. Y.; Lu, L. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery. Nano Res. 2022, 15, 2123–2129.

[17]

Hurlbutt, K.; Wheeler, S.; Capone, I.; Pasta, M. Prussian blue analogs as battery materials. Joule 2018, 2, 1950–1960.

[18]

Du, G. Y.; Pang, H. Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Storage Mater. 2021, 36, 387–408.

[19]

Baster, D.; Kondracki, Ł.; Oveisi, E.; Trabesinger, S.; Girault, H. H. Prussian blue analogue-sodium-vanadium hexacyanoferrate as a cathode material for Na-ion batteries. ACS Appl. Energy Mater. 2021, 4, 9758–9765.

[20]

Song, J.; Wang, L.; Lu, Y. H.; Liu, J.; Guo, B. K.; Xiao, P. H.; Lee, J. J.; Yang, X. Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 2015, 137, 2658–2664.

[21]

Yi, H. C.; Qin, R. Z.; Ding, S. X.; Wang, Y. T.; Li, S. N.; Zhao, Q. H.; Pan, F. Structure and properties of Prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 2021, 31, 2006970.

[22]

Wu, X. Y.; Deng, W. W.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Single-crystal FeFe(CN)6 nanoparticles: A high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 2013, 1, 10130–10134.

[23]

Xie, B. X.; Sun, B. Y.; Gao, T. Y.; Ma, Y. L.; Yin, G. P.; Zuo, P. J. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord. Chem. Rev. 2022, 460, 14478.

[24]

Liu, B. Q.; Zhang, Q.; Ali, U.; Li, Y. Q.; Hao, Y. H.; Zhang, L. Y.; Su, Z. M.; Li, L.; Wang, C. G. Solid–solution reaction suppresses the Jahn–Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries. Chem. Sci. 2022, 13, 10846–10855.

[25]

Ye, M. H.; You, S. Z.; Xiong, J. M.; Yang, Y.; Zhang, Y. F.; Li, C. C. In-situ construction of a NaF-rich cathode-electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery. Mater. Today Energy 2022, 23, 100898

[26]

Wang, X.; Wang, B. Q.; Tang, Y. X.; Xu, B. B.; Liang, C.; Yan, M.; Jiang, Y. Z. Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 2020, 8, 3222–3227.

[27]

Yang, X.; Duan, L.; Ran, X. Q. Effect of polydopamine coating on improving photostability of polyphenylene sulfide fiber. Polym. Bull. 2017, 74, 641–656.

[28]

Zhang, Q.; Fu, L.; Luan, J. Y.; Huang, X. B.; Tang, Y. G.; Xie, H. L.; Wang, H. Y. Surface engineering induced core–shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J. Power Sources 2018, 395, 305–313.

[29]

Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.

[30]

Tang, Y.; Zhang, W. X.; Xue, L. H.; Ding, X. L.; Wang, T.; Liu, X. X.; Liu, J.; Li, X. C.; Huang, Y. H. Polypyrrole-promoted superior cyclability and rate capability of Na x Fe[Fe(CN)6] cathodes for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 6036–6041.

[31]

Luo, S. N.; Zhang, P. C.; Yuan, T.; Ruan, J. F.; Peng, C. X.; Pang, Y. P.; Sun, H.; Yang, J. H.; Zheng, S. Y. Molecular self-assembly of a nanorod N-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J. Mater. Chem. A 2018, 6, 15755–15761.

[32]

Wang, W. L.; Gang, Y.; Hu, Z.; Yan, Z. C.; Li, W. J.; Li, Y. C.; Gu, Q. F.; Wang, Z. X.; Chou, S. L.; Liu, H. K. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980.

[33]

Mohammadi, A.; Hasan, M. A.; Liedberg, B.; Lundström, I.; Salaneck, W. R. Chemical vapour deposition (CVD) of conducting polymers: Polypyrrole. Synth. Met. 1986, 14, 189–197.

[34]

Yuan, T.; He, Y. S.; Zhang, W. M.; Ma, Z. F. A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries. Chem. Commun. 2016, 52, 112–115.

[35]

Yuan, T.; Ruan, J. F.; Zhang, W. M.; Tan, Z. P.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Flexible overoxidized polypyrrole films with orderly structure as high-performance anodes for Li- and Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 35114–35122.

[36]

Huang, T. B.; Du, G. Y.; Qi, Y. R.; Li, J.; Zhong, W.; Yang, Q. J.; Zhang, X.; Xu, M. W. A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries. Inorg. Chem. Front. 2020, 7, 3938–3944.

[37]

Wang, Z. N.; Sougrati, M. T.; He, Y. W.; Le Pham, P. N.; Xu, W.; Iadecola, A.; Ge, R. L.; Zhou, W. H.; Zheng, Q.; Li, X. et al. Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization. Nano Energy 2023, 109, 108256.

[38]

Zhou, M. M.; Tian, X. M.; Sun, Y.; He, X. J.; Li, H.; Ma, T. Y.; Zhao, Q.; Qiu, J. S. Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Res. 2023, 16, 6326–6333.

[39]

Ruan, Y. S.; Chen, L. N.; Cui, L. M.; An, Q. Y. PPy-modified Prussian blue cathode materials for low-cost and cycling-stable aqueous zinc-based hybrid battery. Coatings 2022, 12, 779.

[40]

Chen, Z. Y.; Zhang, L. L.; Fu, X. Y.; Yan, B.; Yang, X. L. Synergistic modification of Fe-based Prussian blue cathode material based on structural regulation and surface engineering. ACS Appl. Mater. Interfaces 2022, 14, 43308–43318.

[41]

Yang, D. Z.; Xu, J.; Liao, X. Z.; Wang, H.; He, Y. S.; Ma, Z. F. Prussian blue/RGO with less coordinated water as superior cathode material for sodium-ion batteries. Chem. Commun. 2023, 59, 211–214.

[42]

Yue, L. C.; Wang, D.; Wu, Z. G.; Zhao, W. X.; Ren, Y. C.; Zhang, L. C.; Zhong, B. H.; Li, N.; Tang, B.; Liu, Q. et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode. Chem. Eng. J. 2022, 433, 134477.

[43]

Wang, W. L.; Gang, Y.; Peng, J.; Hu, Z.; Yan, Z. C.; Lai, W. H.; Zhu, Y. F.; Appadoo, D.; Ye, M.; Cao, Y. L. et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2111727.

[44]

Qiao, Y.; Wei, G. Y.; Cui, J. B.; Zhang, M. M.; Cheng, X. G.; He, D. D.; Li, S.; Liu, Y. Prussian blue coupling with zinc oxide as a protective layer: An efficient cathode for high-rate sodium-ion batteries. Chem. Commun. 2019, 55, 549–552.

[45]

Mo, Z. W.; Zhou, J. Q.; Lu, X.; Liang, L. R.; Liu, F. S.; Liu, Z. X.; Chen, G. M. Flexible nanocomposite electrodes with optimized hybrid structure for improved low-grade heat harvest via thermocells. Sci. China Chem. 2023, 66, 1814–1823.

[46]

Ren, K. R.; Wang, J. C.; Tian, S. H.; Ren, N.; Wang, P. F.; Yi, T. F. Iron-based Prussian blue coupled with polydopamine film for advanced sodium-ion batteries. Mater. Res. Bull. 2023, 166, 112351.

[47]

Chen, Z. Y.; Fu, X. Y.; Zhang, L. L.; Yan, B.; Yang, X. L. High-performance Fe-based Prussian blue cathode material for enhancing the activity of low-spin Fe by Cu doping. ACS Appl. Mater. Interfaces 2022, 14, 5506–5513.

[48]

Zhang, L. L.; Chen, Z. Y.; Fu, X. Y.; Yan, B.; Tao, H. C.; Yang, X. L. Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue. Chem. Eng. J. 2022, 433, 133739.

[49]

Jiang, Y. Z.; Yu, S. L.; Wang, B. Q.; Li, Y.; Sun, W. P.; Lu, Y. H.; Yan, M.; Song, B.; Dou, S. X. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 2016, 26, 5315–5321.

[50]

Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Ji, X.; Miao, L.; Yuan, L. X.; Hu, X. L.; Huang, Y. H. Sodium storage in Na-rich Na x FeFe(CN)6 nanocubes. Nano Energy 2015, 12, 386–393.

[51]

Kim, D. S.; Yoo, H.; Park, M. S.; Kim, H. Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT:PSS layer. J. Alloys Compd. 2019, 791, 385–390.

[52]

Liu, X. Y.; Gong, H. C.; Han, C. Y.; Cao, Y.; Li, Y. T.; Sun, J. Barium ions act as defenders to prevent water from entering Prussian blue lattice for sodium-ion battery. Energy Storage Mater. 2023, 57, 118–124.

[53]

Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.

[54]

Jiang, Y.; Zhou, Y. Z.; Chu, D. T.; Ye, Z. Q.; Wang, Z. H.; Chen, Y.; Liu, A. N.; Lv, Z. K.; Sun, W. B.; Xie, M. Ionic liquid-assisted Prussian blue for stable sodium-ion battery cathodes. ACS Appl. Energy Mater. 2022, 5, 7822–7829.

[55]

Wang, S. Q.; Qin, M. S.; Huang, M.; Huang, X.; Li, Q.; You, Y. Organic solvothermal method promoted monoclinic Prussian blue as a superior cathode for Na-ion batteries. ACS Appl. Energy Mater. 2022, 5, 6927–6935.

[56]

Pan, Z. T.; He, Z. H.; Hou, J. F.; Kong, L. B. Designing CoHCF@FeHCF core–shell structures to enhance the rate performance and cycling stability of sodium-ion batteries. Small 2023, 19, 2302788.

[57]

Xu, X.; Lan, Y. L.; Zhang, B. B.; Zhu, S. J.; Yang, Y.; Gao, Y. F. Construction of polyaniline coated FeMnCu co-doped Prussian blue analogue as cathode for sodium ion battery. Electrochim. Acta 2023, 471, 143375.

[58]

Qiao, S. Y.; Dong, S. H.; Yuan, L. L.; Li, T.; Ma, M.; Wu, Y. F.; Hu, Y. Z.; Qu, T.; Chong, S. K. Structure defects engineering in Prussian blue cathode materials for high-performance sodium-ion batteries. J. Alloys Compd. 2023, 950, 169903.

[59]

Huang, T. B.; Niu, Y. B.; Yang, Q. J.; Yang, W. T.; Xu, M. W. Self-template synthesis of Prussian blue analogue hollow polyhedrons as superior sodium storage cathodes. ACS Appl. Mater. Interfaces 2021, 13, 37187–37193.

[60]

Fu, H. Y.; Liu, C. F.; Zhang, C. K.; Ma, W. D.; Wang, K.; Li, Z.; Lu, X. M.; Cao, G. Z. Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. J. Mater. Chem. A 2017, 5, 9604–9610.

[61]

Gannett, C. N.; Melecio-Zambrano, L.; Theibault, M. J.; Peterson, B. M.; Fors, B. P.; Abruña, H. D. Organic electrode materials for fast-rate, high-power battery applications. Mater. Rep. Energ. 2021, 1, 100008.

[62]

Zuo, D. X.; Wang, C. P.; Han, J. J.; Han, Q. H.; Hu, Y. N.; Wu, J. W.; Qiu, H. J.; Zhang, Q.; Liu, X. J. One-step synthesis of novel core–shell bimetallic hexacyanoferrate for high performance sodium-storage cathode. J. Mater. Sci. Technol. 2022, 114, 180–190.

[63]

Wan, P.; Xie, H.; Zhang, N.; Zhu, S.; Wang, C. D.; Yu, Z.; Chu, W. S.; Song, L.; Wei, S. Q. Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 2020, 30, 2002624.

[64]

Qin, M. S.; Ren, W. H.; Jiang, R. X.; Li, Q.; Yao, X. H.; Wang, S. Q.; You, Y.; Mai, L. Highly crystallized Prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 3999–4007.

File
12274_2023_6394_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2023
Revised: 29 November 2023
Accepted: 03 December 2023
Published: 24 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 22379096, 52271222, 51971146, 51971147, 52171218, and 52371230). We also acknowledge the support of Shanghai Outstanding Academic Leaders Plan, the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-07-E00015), Shanghai Pujiang Program (No. 21PJ1411100), Shanghai Rising-Star Program (Nos. 20QA1407100 and 21QA1406500), and the Shanghai Science and Technology Commission (Nos. 21010503100, 20ZR1438400, and 22ZR1443900).

Return