Journal Home > Volume 17 , Issue 3

Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions (HER). Seawater as the main water resource on the earth should be developed as the water electrolysis to prepare high-purity hydrogen. In this paper, we used two synthesis strategies to prepare the nanocomposite Co4-POM@Co-PGDY (Co4-POM: the Kegging-type microcrystals of K10[Co4(PW9O34)2] and Co-PGDY: cobalt-porphyrin linked graphdiyne) with excellent activity for HER. Co-PGDY as the porous material is applied not only as the protection of microcrystals towards the metal ion in seawater but also as the co-electrocatalyst of Co4-POM. Co4-POM@Co-PGDY exhibits excellent HER performance in seawater electrolytes with low overpotential and high stability at high density. Moreover, we have observed a key H3O+ intermediate emergence on the surface of nanocomposite during hydrogen evolution process in seawater by Raman synchrotron radiation-based Fourier transform infrared (SR-FTIR). The results in this paper provide an effective strategy for preparing polyoxometalate-based electrocatalysts with high-performance toward hydrogen evolution reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanocomposite: Keggin-type Co4-polyoxometalate@cobalt-porphyrin linked graphdiyne for hydrogen evolution in seawater

Show Author's information Jiejie Ping1Danyang He1Fei Wang1Nan Wang1Yi-cheng Fu3Zihao Xing2( )Zhiyu Jia1( )Guo-Yu Yang1( )
Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Facluty of Chmeistry Northeast Normal University, Changchun 130024, China
Peking University Third Hospital, Beijing 100190, China

Abstract

Polyoxometalate-based nanocomposites with electrocatalytic activity have been applied in hydrogen evolution reactions (HER). Seawater as the main water resource on the earth should be developed as the water electrolysis to prepare high-purity hydrogen. In this paper, we used two synthesis strategies to prepare the nanocomposite Co4-POM@Co-PGDY (Co4-POM: the Kegging-type microcrystals of K10[Co4(PW9O34)2] and Co-PGDY: cobalt-porphyrin linked graphdiyne) with excellent activity for HER. Co-PGDY as the porous material is applied not only as the protection of microcrystals towards the metal ion in seawater but also as the co-electrocatalyst of Co4-POM. Co4-POM@Co-PGDY exhibits excellent HER performance in seawater electrolytes with low overpotential and high stability at high density. Moreover, we have observed a key H3O+ intermediate emergence on the surface of nanocomposite during hydrogen evolution process in seawater by Raman synchrotron radiation-based Fourier transform infrared (SR-FTIR). The results in this paper provide an effective strategy for preparing polyoxometalate-based electrocatalysts with high-performance toward hydrogen evolution reaction.

Keywords: hydrogen evolution reaction, graphdiyne, polyoxometalate, seawater

References(55)

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Song, H. J.; Yoon, H.; Ju, B.; Lee, D. Y.; Kim, D. W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1− x Fe x P2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 2020, 10, 702–709.

[4]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

[5]

Møller, K. T.; Jensen, T. R.; Akiba, E.; Li, H. W. Hydrogen-A sustainable energy carrier. Prog. Nat. Sci.: Mater. Int. 2017, 27, 34–40.

[6]

Wu, J. D.; Wang, D. P.; Wan, S. A.; Liu, H. L.; Wang, C.; Wang, X. An efficient cobalt phosphide electrocatalyst derived from cobalt phosphonate complex for all-pH hydrogen evolution reaction and overall water splitting in alkaline solution. Small, 2020, 16, 1900550.

[7]

Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

[8]
Zhang, L. L.; Shi, X. X.; Xu, A. J.; Zhong, W. W.; Zhang, J. T.; Shen, S. J. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-023-6270-1.
DOI
[9]

Poudel, M. B.; Logeshwaran, N.; Kim, A. R.; Karthikeyan, S. C.; Vijayapradeep, S.; Yoo, D. J. Integrated core–shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2023, 960, 170678.

[10]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoO x interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[11]

Jiang, S. H.; Zhang, R. Y.; Liu, H. X.; Rao, Y.; Yu, Y. N.; Chen, S.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Promoting formation of oxygen vacancies in two-dimensional cobalt-doped ceria nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 6461–6466.

[12]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[13]

Yu, W. L.; Liu, H. R.; Zhao, Y.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Wu, Z. X.; Chai, Y. M.; Wang, L. Amorphous NiO n coupled with trace PtO x toward superior electrocatalytic overall water splitting in alkaline seawater media. Nano Res. 2023, 16, 6517–6530.

[14]

Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

[15]

Guo, L. L.; Yu, Q. P.; Zhai, X. J.; Chi, J. Q.; Cui, T.; Zhang, Y.; Lai, J. P.; Wang, L. Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Res. 2022, 15, 8846–8856.

[16]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[17]

Ma, F. X.; Wu, H. B.; Xia, B. Y.; Xu, C. Y.; Lou, X. W. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 15395–15399.

[18]

Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

[19]

Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

[20]

Mukhopadhyay, S.; Debgupta, J.; Singh, C.; Kar, A.; Das, S. K. A Keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew. Chem., Int. Ed. 2018, 57, 1918–1923.

[21]

Wang, Z. L.; Hao, X. F.; Jiang, Z.; Sun, X. P.; Xu, D.; Wang, J.; Zhong, H. X.; Meng, F. L.; Zhang, X. B. C and N hybrid coordination derived Co–C–N complex as a highly efficient electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073.

[22]

Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

[23]

Ni, B.; Zhang, Q. H.; Ouyang, C.; Zhang, S. M.; Yu, B.; Zhuang, J.; Gu, L.; Wang, X. The synthesis of sub-nano-thick Pd nanobelt-based materials for enhanced hydrogen evolution reaction activity. CCS Chem. 2019, 2, 642–654.

[24]

Liu, F.; Shi, C. X.; Guo, X. L.; He, Z. X.; Pan, L.; Huang, Z. F.; Zhang, X. W.; Zou, J. J. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Adv. Sci. 2022, 9, 2200307.

[25]

Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

[26]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[27]

Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

[28]

Sun, H.; Xu, X. M.; Jing, C. J.; Shang, W. H.; Wang, Y. C.; Zeng, M. L.; Jia, Z. Y. Composite cluster: Co5.7Ni2.3W12O42(OH)4@fluoro-graphdiyne as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Mater. Chem. Front. 2021, 5, 7666–7674.

[29]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[30]

Miao, J.; Lang, Z. L.; Zhang, X. Y.; Kong, W. G.; Peng, O. W.; Yang, Y.; Wang, S. P.; Cheng, J. J.; He, T. C.; Amini, A. et al. Polyoxometalate-derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater. Adv. Funct. Mater. 2019, 29, 1805893.

[31]

Miras, H. N.; Vilà-Nadal, L.; Cronin, L. Polyoxometalate based open-frameworks (POM-OFs). Chem. Soc. Rev. 2014, 43, 5679–5699.

[32]

Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

[33]

Freire, C.; Fernandes, D. M.; Nunes, M.; Abdelkader, V. K. POM & MOF-based electrocatalysts for energy-related reactions. ChemCatChem 2018, 10, 1703–1730.

[34]

Xing, C. Y.; Xue, Y. R.; Huang, B. L.; Yu, H. D.; Hui, L.; Fang, Y.; Liu, Y. X.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Fluorographdiyne: A metal-free catalyst for applications in water reduction and oxidation. Angew. Chem., Int. Ed. 2019, 58, 13897–13903.

[35]

Xu, X. M.; Wang, Y. C.; Shang, W. H.; Wang, F.; Zhang, Q.; Li, K.; Wu, M.; Jia, Z. Y. Cobalt carbonate hydroxides anchored on nanoscale pyrenely-graphdiyne nanowalls toward bifunctional electrocatalysts with high performance and stability for overall water splitting. New J. Chem. 2023, 47, 11594–11601.

[36]

Kim, K.; Kang, T.; Kim, M.; Kim, J. Three-dimensional entangled and twisted structures of nitrogen doped poly-(1,4-diethynylbenzene) chain combined with cobalt single atom as a highly efficient bifunctional electrocatalyst. Appl. Catal. B: Environ. 2020, 275, 119107.

[37]

Lv, Q.; Wang, N.; Si, W. Y.; Hou, Z. F.; Li, X. D.; Wang, X.; Zhao, F. H.; Yang, Z.; Zhang, Y. L.; Huang, C. S. Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl. Catal. B: Environ. 2020, 261, 118234.

[38]

Zheng, X. C.; Chen, S. A.; Li, J. Z.; Wu, H.; Zhang, C.; Zhang, D. Y.; Chen, X.; Gao, Y.; He, F.; Hui, L. et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research. ACS Nano 2023, 17, 14309–14346.

[39]

Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

[40]

Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 2015, 27, 3431–3436.

[41]

Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

[42]

Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

[43]

Finke, R. G.; Droege, M. W.; Domaille, P. J. Trivacant heteropolytungstate derivatives. 3.1 Rational syntheses, characterization, two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810− and P4W30M4(H2O)2O11216− (M = Co, Cu, Zn). Inorg. Chem 1987, 26, 3886–3896

[44]

Balula, S. S.; Granadeiro, C. M.; Barbosa, A. D. S.; Santos, I. C. M. S.; Cunha-Silva, L. Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catal. Today 2013, 210, 142–148.

[45]

Haley, M. M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 2008, 80, 519–532.

[46]

Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.

[47]

Wang, J.; Ciucci, F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Appl. Catal B: Environ. 2019, 254, 292–299.

[48]

Thilagavathi, T.; Venugopal, D.; Thangaraju, D.; Marnadu, R.; Palanivel, B.; Imran, M.; Shkir, M.; Ubaidullah, M.; AlFaify, S. A facile co-precipitation synthesis of novel WO3/NiWO4 nanocomposite with improved photocatalytic activity. Mater. Sci. Semicond. Process. 2021, 133, 105970.

[49]

Wu, Z. S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Müllen, K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 2014, 26, 1450–1455.

[50]

Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.

[51]

Yuan, S. W.; Shui, J. L.; Grabstanowicz, L.; Chen, C.; Commet, S.; Reprogle, B.; Xu, T.; Yu, L. P.; Liu, D. J. A highly active and support-free oxygen reduction catalyst prepared from ultrahigh-surface-area porous polyporphyrin. Angew. Chem., Int. Ed. 2013, 52, 8349–8353.

[52]

Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 2018, 12, 9635–9638.

[53]

Ubaidullah, M.; Al-Enizi, A. M.; Ahamad, T.; Shaikh, S. F.; Al-Abdrabalnabi, M. A.; Samdani, M. S.; Kumar, D.; Alam, M. A.; Khan, M. Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. J. Energy Storage 2021, 33, 102125.

[54]

Hwang, S. M.; Park, J. S.; Kim, Y.; Go, W.; Han, J.; Kim, Y.; Kim, Y. Rechargeable seawater batteries-from concept to applications. Adv. Mater. 2019, 31, 1804936.

[55]

Wang, X. S.; Xu, C. C.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 2019, 10, 4876.

File
12274_2023_6393_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2023
Revised: 24 November 2023
Accepted: 03 December 2023
Published: 12 January 2024
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21831001, 21801014, 22171024, and 22202037) and the Fundamental Research Funds for the Central Universities (No. 2412023QD019). Tests were supported by the Analysis & Testing Center of Beijing Institute of Technology.

Return