Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
High density and safe storage of hydrogen are the preconditions for the large-scale application of hydrogen energy. Herein, the hydrogen storage properties of Ti0.6Zr0.4Cr0.6Mn1.4 alloys are systematically studied by introducing Y element instead of Ti element through vacuum arc melting. After the partial substitution of Y, a second phase of rare earth oxide is added in addition to the main suction hydrogen phase, C14 Laves phase. Thanks to the unique properties of rare earth elements, the partial substitution of Y can not only improve the activation properties and plateau pressure of the alloys, but also increase the effective hydrogen storage capacity of the alloys. The comprehensive properties of hydrogen storage alloys are improved by multidimensional regulation of rare earth elements. Among them, Ti0.552Y0.048Zr0.4Cr0.6Mn1.4 has the best comprehensive performance. The alloy can absorb hydrogen without activation at room temperature and 5 MPa, with a maximum hydrogen storage capacity of 1.98 wt.%. At the same time, it reduces the stability of the hydride and the enthalpy change value, making it easier to release hydrogen. Through theoretical analysis and first-principle simulation, the results show that the substitution of Y element reduces the migration energy barrier of hydrogen and the structural stability of the system, which is conducive to hydrogen evolution. The alloy has superior durability compared to the original alloy, and the capacity retention rate was 96.79% after 100 hydrogen absorption/desorption cycles.
Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.
Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.
Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustain. Chem. Eng. 2020, 8, 4755–4763.
Fan, Y. P.; Chen, D. D.; Liu, X. Y.; Fan, G. X.; Liu, B. Z. Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene. Int. J. Hydrog. Energy 2019, 44, 29297–29303.
Ding, N.; Liu, W. Q.; Chen, B. B.; Wang, S. H.; Zhao, S. L.; Wang, Q. S.; Wang, C. L.; Yin, D. M.; Wang, L. M.; Cheng, Y. Interface and body engineering via aluminum hydride enabling Ti-V-Cr-Mn alloy with enhanced hydrogen storage performance. Chem. Eng. J. 2023, 470, 144143.
Peng, Z. Y.; Li, Q.; Ouyang, L. Z.; Jiang, W. B.; Chen, K.; Wang, H.; Liu, J. W.; Li, Z. N.; Wang, S. M.; Zhu, M. Overview of hydrogen compression materials based on a three-stage metal hydride hydrogen compressor. J. Alloys Compd. 2022, 895, 162465.
Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen storage for mobility: A review. Materials (Basel) 2019, 12, 1973.
Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrog. Energy 2019, 44, 15072–15086.
Durbin, D. J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrog. Energy 2013, 38, 14595–14617.
Zhang, C. M.; Liang, L.; Zhao, S. L.; Wu, Z. J.; Wang, S. H.; Yin, D. M.; Wang, Q. S.; Wang, L. M.; Wang, C. L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. 2023, 16, 9426–9434.
Qiao, W. F.; Yin, D. M.; Zhao, S. L.; Ding, N.; Liang, L.; Wang, C. L.; Wang, L. M.; He, M.; Cheng, Y. Effects of Cu doping on the hydrogen storage performance of Ti-Mn-based, AB2-type alloys. Chem. Eng. J. 2023, 465, 142837.
Zheng, X. P.; Yuan, X. S.; Lai, X. Y.; Jia, R. N.; Zhu, Y. S.; Zhang, Z. H.; Hou, X. Z.; Zhao, Y.; Zhao, G.; Peng, Y. Q. Hydrogen storage performance of HPSB hydrogen storage materials. Chem. Phys. Lett. 2019, 734, 136697.
Lai, Q. W.; Sun, Y. H.; Wang, T.; Modi, P.; Cazorla, C.; Demirci, U. B.; Ares Fernandez, J. R.; Leardini, F.; Aguey-Zinsou, K. F. How to design hydrogen storage materials. Fundamentals, synthesis, and storage tanks. Adv. Sustain. Syst. 2019, 3, 1900043.
Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627.
Zhao, S. L.; Liang, L.; Liu, B. Z.; Wang, L. M.; Liang, F. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 °C. Small 2022, 18, 2107983.
Zhang, Y. H.; Li, C.; Yuan, Z. M.; Qi, Y.; Guo, S. H.; Zhao, D. L. Research progress of TiFe-based hydrogen storage alloys. J. Iron Steel Res. Int. 2022, 29, 537–551.
Liu, J. J.; Sun, L.; Yang, J. G.; Guo, D. L.; Chen, D. B.; Yang, L. H.; Xiao, P. Ti-Mn hydrogen storage alloys: From properties to applications. RSC Adv. 2022, 12, 35744–35755.
Ding, N.; Li, Y. C.; Liang, F.; Liu, B. Z.; Liu, W. Q.; Wang, Q. S.; Wang, L. M. Highly efficient hydrogen storage capacity of 2.5 wt.% above 0.1 MPa using Y and Cr codoped V-based alloys. ACS Appl. Energy Mater. 2022, 5, 3282–3289.
Liang, L.; Wang, C. L.; Ren, M. A.; Li, S. L.; Wu, Z. J.; Wang, L. M.; Liang, F. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Appl. Mater. Interfaces 2021, 13, 26998–27005.
Zheng, W. S.; Song, W.; Wu, T.; Wang, J. Y.; He, Y. L.; Lu, X. G. Experimental investigation and thermodynamic modeling of the ternary Ti-Fe-Mn system for hydrogen storage applications. J. Alloys Compd. 2022, 891, 161957.
Lu, X.; Zhang, L. T.; Zheng, J. G.; Yu, X. B. Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage. J. Alloys Compd. 2022, 905, 164169.
Liu, X. S.; Zhou, L.; Li, W. H.; Wu, S. P.; Huang, Q. L.; Wang, Y. K.; Cai, X. L. Preparation of Mg2Ni hydrogen storage alloy materials by high energy ball milling. Adv. Mater. Sci. Eng. 2022, 2022, 2661424.
Yu, H. E.; Yang, X.; Jiang, X. J.; Wu, Y. M.; Chen, S. P.; Lin, W.; Wu, Y.; Xie, L.; Li, X. G.; Zheng, J. LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole. Nano Energy 2021, 80, 105476.
Wu, Y.; Peng, Y. T.; Jiang, X. J.; Zeng, H.; Wang, Z. Y.; Zheng, J.; Li, X. G. Reversible hydrogenation of AB2-type Zr-Mg-Ni-V based hydrogen storage alloys. Prog. Nat. Sci. 2021, 31, 319–323.
Joubert, J. M.; Paul-Boncour, V.; Cuevas, F.; Zhang, J. X.; Latroche, M. LaNi5 related AB5 compounds: Structure, properties and applications. J. Alloys Compd. 2021, 862, 158163.
Téliz, E.; Abboud, M.; Faccio, R.; Esteves, M.; Zinola, F.; Díaz, V. Hydrogen storage in AB2 hydride alloys: Diffusion processes analysis. J. Electroanal. Chem. 2020, 879, 114781.
Liu, H.; Zhang, J. X.; Sun, P.; Zhou, C. S.; Liu, Y.; Fang, Z. Z. Effect of oxygen on the hydrogen storage properties of TiFe alloys. J. Energy Storage 2022, 55, 105543.
Dematteis, E. M.; Berti, N.; Cuevas, F.; Latroche, M.; Baricco, M. Substitutional effects in TiFe for hydrogen storage: A comprehensive review. Mater. Adv. 2021, 2, 2524–2560.
Sujan, G. K.; Pan, Z. X.; Li, H. J.; Liang, D. L.; Alam, N. An overview on TiFe intermetallic for solid-state hydrogen storage: Microstructure, hydrogenation and fabrication processes. Crit. Rev. Solid State Mater. Sci. 2020, 45, 410–427.
Grigorova, E.; Tzvetkov, P.; Todorova, S.; Markov, P.; Spassov, T. Facilitated synthesis of Mg2Ni based composites with attractive hydrogen sorption properties. Materials (Basel) 2021, 14, 1936.
Song, M. Y.; Kwak, Y. J.; Choi, E. Rate-controlling steps for the hydriding reaction of the intermetallic compound Mg2Ni. J. Nanosci. Nanotechnol. 2020, 20, 7010–7017.
Zadorozhnyy, V. Y.; Menjo, M.; Zadogozhnyy, M. Y.; Kaloshkin, S. D.; Louzguine-Luzgin, D. V. Hydrogen sorption properties of nanostructured bulk Mg2Ni intermetallic compound. J. Alloys Compd. 2014, 586, S400–S404.
Baum, Z. J.; Diaz, L. L.; Konovalova, T.; Zhou, Q. A. Materials research directions toward a green hydrogen economy: A review. ACS Omega. 2022, 7, 32908–32935.
Ye, Y.; Yue, Y.; Lu, J. F.; Ding, J.; Wang, W. L.; Yan, J. Y. Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials. Renew. Energy 2021, 180, 734–743.
Gupta, S.; Sharma, V. K. Performance investigation of a multi-stage sorption hydrogen compressor. Int. J. Hydrog. Energy 2021, 46, 1056–1075.
Chandra, S.; Sharma, P.; Muthukumar, P.; Tatiparti, S. S. V. Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes. Int. J. Hydrog. Energy 2021, 46, 19031–19045.
Noritake, T.; Aoki, M. Hydrogenation and dehydrogenation cycle properties of Ti-Mn based alloy Ti0.93Zr0.07Mn1.15Cr0.35 in hydrogen gas. Int. J. Hydrog. Energy 2019, 44, 20093–20098.
Guo, X. M.; Wu, E. D.; Wang, S. C. Hydrogen storage properties of Laves phase Ti1− x Zr x (Mn0.5Cr0.5)2 alloys. Rare Met. 2006, 25, 218–223.
Cao, Z. M.; Zhou, P. P.; Xiao, X. Z.; Zhan, L. J.; Li, Z. N.; Wang, S. M.; Chen, L. X. Investigation on Ti-Zr-Cr-Fe-V based alloys for metal hydride hydrogen compressor at moderate working temperatures. Int. J. Hydrog. Energy 2021, 46, 21580–21589.
Stein, F.; Leineweber, A. Laves phases: A review of their functional and structural applications and an improved fundamental understanding of stability and properties. J. Mater. Sci. 2021, 56, 5321–5427.
Chanchetti, L. F.; Leiva, D. R.; Lopes de Faria, L. I.; Ishikawa, T. T. A scientometric review of research in hydrogen storage materials. Int. J. Hydrog. Energy 2020, 45, 5356–5366.
Nayebossadri, S.; Book, D. Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression. Renew. Energy 2019, 143, 1010–1021.
Lototskyy, M.; Yartys, V. A. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. J. Alloys Compd. 2015, 645, S365–S373.
Ivey, D. G.; Northwood, D. O. Storing hydrogen in AB2 laves-type compounds. Z. Phys. Chem. 1986, 147, 191–209.
Sinha, V. K.; Yu, G. Y.; Wallace, W. E. Hydrogen storage in some ternary and quaternary zirconium-based alloys with the C14 structure. J. Less-Common. Met. 1985, 106, 67–77.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.
Li, H.; Yu, B.; Zhuang, Z. C.; Sun, W. P.; Jia, B. H.; Ma, T. Y. A small change in the local atomic environment for a big improvement in single-atom catalysis. J. Mater. Chem. A 2021, 9, 4184–4192.
Li, J. G.; Guo, Y. R.; Jiang, X. J.; Li, S.; Li, X. G. Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7- x Mn0.3Al x alloy by Al substituting for Fe. Renew. Energy 2020, 153, 1140–1154.
Volodin, A. A.; Denys, R. V.; Wan, C. B.; Wijayanti, I. D.; Suwarno; Tarasov, B. P.; Antonov, V. E.; Yartys, V. A. Study of hydrogen storage and electrochemical properties of AB2-type Ti0.15Zr0.85La0.03Ni1.2Mn0.7V0.12Fe0.12 alloy. J. Alloys Compd. 2019, 793, 564–575.
Yao, Z. D.; Liu, L. X.; Xiao, X. Z.; Wang, C. T.; Jiang, L. J.; Chen, L. X. Effect of rare earth doping on the hydrogen storage performance of Ti1.02Cr1.1Mn0.3Fe0.6 alloy for hybrid hydrogen storage application. J. Alloys Compd. 2018, 731, 524–530.
Zhou, L.; Li, W. X.; Hu, H. Z.; Zeng, H. F.; Chen, Q. J. Ce-doped TiZrCrMn alloys for enhanced hydrogen storage. Energy Fuels 2022, 36, 3997–4005.
Leng, H. Y.; Yu, Z. G.; Yin, J.; Li, Q.; Wu, Z.; Chou, K. C. Effects of Ce on the hydrogen storage properties of TiFe0.9Mn0.1 alloy. Int. J. Hydrog. Energy 2017, 42, 23731–23736.
Shang, H. W.; Li, Y. Q.; Zhang, Y. H.; Qi, Y.; Guo, S. H.; Zhao, D. L. Structure and hydrogenation performances of as-cast Ti1.1− x RE x Fe0.8Mn0.2 (RE = Pr, Sm, and Nd; x = 0,0.01) alloys. Int. J. Hydrog. Energy 2018, 43, 19091–19101.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Wang, X. H.; Chen, R. G.; Chen, C. P.; Wang, Q. D. Hydrogen storage properties of Ti x Fe + y wt.% La and its use in metal hydride hydrogen compressor. J. Alloys Compd. 2006, 425, 291–295.
Qin, C. S.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Tuning hydrogen storage thermodynamic properties of ZrFe2 by partial substitution with rare earth element Y. Int. J. Hydrog. Energy 2021, 46, 18445–18452.
Liang, L.; Zhang, C. M.; Zhao, S. L.; Liu, B. Z.; Wang, L. M.; Liang, F. Platinum-functionalized MXene serving as electron transport layer for highly efficiently catalyze dehydrogenation of AlH3 with capacity of 9.3 wt.%. Chem. Eng. J. 2023, 451, 138791.
Gonzalez, E. D.; Gil, L. V. G.; Kugelmeier, C. L.; Amigó-Borras, V.; Mastelaro, V. R.; Rovere, C. A. D.; Nascente, P. A. P. Effect of Zr content on the physicochemical, electrochemical, and biological properties of Ti80Nb20-based alloys. Mater. Today Commun. 2022, 32, 104069.
Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.
Šalkus, T.; Kazakevičius, E.; Kežionis, A.; Kazlauskienė, V.; Miškinis, J.; Dindune, A.; Kanepe, Z.; Ronis, J.; Dudek, M.; Bućko, M.; Dygas, J. R.; Bogusz, W.; Orliukas, A. F. XPS and ionic conductivity studies on Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. Ionics 2010, 16, 631–637.