Journal Home > Volume 17 , Issue 5

Transition metal oxides have attracted intense interest owing to their abundant physical and chemical properties. The controlled preparation of large-area, high-quality two-dimensional crystals is essential for revealing their inherent properties and realizing high-performance devices. However, fabricating two-dimensional (2D) transition metal oxides using a general approach still presents substantial challenges. Herein, we successfully achieve highly crystalline nickel oxide (NiO) flakes with a thickness as thin as 3.3 nm through the salt-assisted vapor–liquid–solid (VLS) growth method, which demonstrated exceptional stability under ambient conditions. To explore the great potential of the NiO crystal in this work, an artificial synapse based on the NiO-flake resistive switching (RS) layer is investigated. Short-term and long-term synaptic behaviors are obtained with external stimuli. The artificial synaptic performance provides the foundation of the neuromorphic application, including handwriting number recognition based on artificial neuron network (ANN) and the virtually unsupervised learning capability based on generative adversarial network (GAN). This pioneering work not only paves new paths for the synthesis of 2D oxides in the future but also demonstrates the substantial potential of oxides in the field of neuromorphic computing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Salt-assisted vapor–liquid–solid growth of high-quality ultrathin nickel oxide flakes for artificial synapses in image recognition applications

Show Author's information Hui Zhang1,2,§Zongjie Shen2,§Alei Li2Lin Wang2Qinan Wang2Yunfei Li2Yunlei Zhong2Juntong Zhu3Yong Zhang2Mengjiao Han4Dan Tian6Chun Zhao5( )Lixing Kang2( )Qingwen Li1,2( )
School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
College of Materials Science and Engineering, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

§ Hui Zhang and Zongjie Shen contributed equally to this work.

Abstract

Transition metal oxides have attracted intense interest owing to their abundant physical and chemical properties. The controlled preparation of large-area, high-quality two-dimensional crystals is essential for revealing their inherent properties and realizing high-performance devices. However, fabricating two-dimensional (2D) transition metal oxides using a general approach still presents substantial challenges. Herein, we successfully achieve highly crystalline nickel oxide (NiO) flakes with a thickness as thin as 3.3 nm through the salt-assisted vapor–liquid–solid (VLS) growth method, which demonstrated exceptional stability under ambient conditions. To explore the great potential of the NiO crystal in this work, an artificial synapse based on the NiO-flake resistive switching (RS) layer is investigated. Short-term and long-term synaptic behaviors are obtained with external stimuli. The artificial synaptic performance provides the foundation of the neuromorphic application, including handwriting number recognition based on artificial neuron network (ANN) and the virtually unsupervised learning capability based on generative adversarial network (GAN). This pioneering work not only paves new paths for the synthesis of 2D oxides in the future but also demonstrates the substantial potential of oxides in the field of neuromorphic computing.

Keywords: memristor, synapse, vapor–liquid–solid (VLS) growth, generative adversarial network (GAN), nickel oxide (NiO) flakes

References(54)

[1]
Feng, X. Q.; Cheng, R. Q.; Yin, L.; Wen, Y.; Jiang, J.; He, J. Two-dimensional oxide crystals for device applications: Challenges and opportunities. Adv. Mater., in press, https://doi.org/10.1002/adma.202304708.
DOI
[2]

Han, W.; Huang, P.; Li, L.; Wang, F. K.; Luo, P.; Liu, K. L.; Zhou, X.; Li, H. Q.; Zhang, X. W.; Cui, Y. et al. Two-dimensional inorganic molecular crystals. Nat. Commun. 2019, 10, 4728.

[3]

Wang, Y. Z.; Wang, P.; Wang, H.; Xu, B. Q.; Li, H.; Cheng, M.; Feng, W.; Du, R. F.; Song, L. Y.; Wen, X. et al. Room-temperature magnetoelectric coupling in atomically thin ε-Fe2O3. Adv. Mater. 2022, 35, 2209465.

[4]

Zhang, H. M.; Wu, Y. W.; Huang, Z. W.; Shen, X. H.; Li, B. L.; Zhang, Z. C.; Wu, R. X.; Wang, D.; Yi, C.; He, K. et al. Synthesis of two-dimensional MoO2 nanoplates with large linear magnetoresistance and nonlinear hall effect. Nano Lett. 2023, 23, 2179–2186.

[5]

Feng, X. Q.; Zhai, B. X.; Cheng, R. Q.; Yin, L.; Wen, Y.; Jiang, J.; Wang, H.; Li, Z. W.; Zhu, Y. S.; He, J. Phase engineering of 2D spinel-type manganese oxides. Adv. Mater. 2023, 35, e2304118.

[6]

Zhang, Y.; Cao, F.; Li, S. Y.; Liu, X. Y.; Kang, L. X.; Wu, L. M.; Fang, X. S. Integration of filter membrane and Ca2Nb3O10 nanosheets for high performance flexible UV photodetectors. J. Mater. Sci. Technol. 2022, 129, 108–114.

[7]

Zhang, Y.; Yao, J.; Zhang, Z.; Zhang, R.; Li, L.; Teng, Y.; Shen, Z. J.; Kang, L. X.; Wu, L. M.; Fang, X. S. Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol. 2023, 164, 95–101.

[8]

Ran, Y. F.; Pei, Y. F.; Zhou, Z. Y.; Wang, H.; Sun, Y.; Wang, Z. R.; Hao, M. M.; Zhao, J. H.; Chen, J. S.; Yan, X. B. A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing. Nano Res. 2023, 16, 1165–1182.

[9]

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

[10]

Lin, Y.; Meng, F. Q.; Zeng, T.; Zhang, Q. H.; Wang, Z. Q.; Cheng, Y. K.; Zhao, X. N.; Gu, L.; Xu, H. Y.; Liu, Y. C. Direct observation of oxygen ion dynamics in a WO3− x based second-order memristor with dendritic integration functions. Adv. Funct. Mater. 2023, 33, 2302787.

[11]

Li, Y.; Zhang, Z. C.; Li, J. Q.; Chen, X.-D.; Kong, Y.; Wang, F.-D.; Zhang, G.-X.; Lu, T.-B.; Zhang, J. Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer. Nat. Commun. 2022, 13, 4591.

[12]

Zhang, Z.; Mondal, S.; Mandal, S.; Allred, J. M.; Aghamiri, N. A.; Fali, A.; Zhang, Z.; Zhou, H.; Cao, H.; Rodolakis, F. et al. Neuromorphic learning with Mott insulator NiO. Proc. Natl. Acad. Sci. USA 2021, 118, e2017239118.

[13]

Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

[14]

Zhu, Y. Q.; Guo, H. Z.; Wu, Y.; Cao, C. B.; Tao, S.; Wu, Z. Y. Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2014, 2, 7904–7911.

[15]

Napari, M.; Huq, T. N.; Hoye, R. L. Z.; MacManus-Driscoll, J. L. Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next-generation rigid and flexible device applications. InfoMat 2021, 3, 536–576.

[16]

Zhang, P.; Wang, X. G.; Jiang, H. N.; Zhang, Y. W.; He, Q. Q.; Si, K. P.; Li, B. X.; Zhao, F. F.; Cui, A. Y.; Wei, Y. et al. Flux-assisted growth of atomically thin materials. Nat. Synth. 2022, 1, 864–872.

[17]

Zhao, Z. J.; Fang, Z.; Han, X. C.; Yang, S. Q.; Zhou, C.; Zeng, Y.; Zhang, B.; Li, W.; Wang, Z.; Zhang, Y. et al. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat. Commun. 2023, 14, 958.

[18]

Rooksby, H. P. Structure of nickel oxide. Nature 1943, 152, 304–304.

[19]

Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L.-J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

[20]

Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276–16284.

[21]

Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401.

[22]

Jiang, J.; Feng, W. Y.; Wen, Y.; Yin, L.; Wang, H.; Feng, X. Q.; Pei, Y. L.; Cheng, R. Q.; He, J. Tuning 2D magnetism in cobalt monoxide nanosheets via in situ nickel-doping. Adv. Mater. 2023, 35, 2301668.

[23]

Hussain, S.; Zhou, R.; Li, Y.; Qian, Z. Y.; Urooj, Z.; Younas, M.; Zhao, Z. Y.; Zhang, Q. H.; Dong, W. L.; Wu, Y. Y. et al. Liquid phase edge epitaxy of transition-metal dichalcogenide monolayers. J. Am. Chem. Soc. 2023, 145, 11348–11355.

[24]

Li, S. S.; Lin, Y.-C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D.-M.; Wang, J. Y.; Zhang, Q. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

[25]

Xie, J. N.; Meng, G. D.; Chen, B. Y.; Li, Z.; Yin, Z. Y.; Cheng, Y. H. Vapor–liquid–solid growth of morphology-tailorable WS2 toward P-type monolayer field-effect transistors. ACS Appl. Mater. Interfaces 2022, 14, 45716–45724.

[26]

Zhao, C. S.; Zhang, H. T.; Si, W. J.; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 2016, 7, 12543.

[27]

Visser, D.; Verschoor, G. C.; IJdo, D. J. W. The structure of KNiCl3 at room temperature. Acta Cryst. B 1980, 36, 28–34.

[28]

Wang, J.; Ma, L.; Wang, X. Y.; Wang, X. H.; Yao, J. J.; Yi, Q. H.; Tang, R. J.; Zou, G. F. Sub-nanometer thick wafer-size NiO films with room-temperature ferromagnetic behavior. Angew. Chem., Int. Ed. 2021, 60, 25020–25027.

[29]

Bagus, P. S.; Nelin, C. J.; Brundle, C. R.; Crist, B. V.; Ilton, E. S.; Lahiri, N.; Rosso, K. M. Main and satellite features in the Ni 2p XPS of NiO. Inorg. Chem. 2022, 61, 18077–18094.

[30]

Zhang, Y. W.; Zhang, P.; Xu, T. F.; Wang, X. G.; Jiang, H. N.; Gong, Y. J. H2S-assisted growth of 2D MS2 (M = Ti, Zr, Nb). Chin. Chem. Lett. 2022, 33, 1390–1394.

[31]

Wang, P.; Ge, J.; Luo, J. W.; Wang, H.; Song, L. Y.; Li, Z. W.; Yang, J. B.; Wang, Y. Z.; Du, R. F.; Feng, W. et al. Interisland-distance-mediated growth of centimeter-scale two-dimensional magnetic Fe3O4 arrays with unidirectional domain orientations. Nano Lett. 2023, 23, 1758–1766.

[32]

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

[33]

Gupta, S. K.; Mao, Y. B. A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog. Mater. Sci. 2021, 117, 100734.

[34]

Huang, L. L.; Thi, Q. H.; Zheng, F. Y.; Chen, X.; Chu, Y. W.; Lee, C.-S.; Zhao, J.; Ly, T. H. Catalyzed kinetic growth in two-dimensional MoS2. J. Am. Chem. Soc. 2020, 142, 13130–13135.

[35]

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L.-J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

[36]

Huang, J. H.; Yang, S. D.; Tang, X.; Yang, L. L.; Chen, W. J.; Chen, Z. B.; Li, X. M.; Zeng, Z. P.; Tang, Z. K.; Gui, X. C. Flexible, transparent, and wafer-scale artificial synapse array based on TiO x /Ti3C2T x film for neuromorphic computing. Adv. Mater. 2023, 35, 2303737.

[37]

Zhang, J. Y.; Guo, P.; Guo, Z. Y.; Li, L.; Sun, T. R.; Liu, D. P.; Tian, L.; Zu, G. Q.; Xiong, L. Z.; Zhang, J. H. et al. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater. 2023, 33, 2302885.

[38]

Peng, Z. H.; Cheng, Z. Q.; Ke, S. W.; Xiao, Y. Y.; Ye, Z. E.; Wang, Z. K.; Shi, T. Y.; Ye, C.; Wen, X.; Chu, P. K. et al. Flexible memristor constructed by 2D cadmium phosphorus trichalcogenide for artificial synapse and logic operation. Adv. Funct. Mater. 2023, 33, 2211269.

[39]

Bu, Y. L.; Xu, T.; Geng, S. Y. Y.; Fan, S. Q.; Li, Q.; Su, J. Ferroelectrics-electret synergetic organic artificial synapses with single-polarity driven dynamic reconfigurable modulation. Adv. Funct. Mater. 2023, 33, 2213741.

[40]

Chen, L.; Li, R. L.; Yuan, S. L.; Chen, A. P.; Li, Y.; Zhang, T.; Wei, L.; Zhang, Q. C.; Li, Q. W. Fiber-shaped artificial optoelectronic synapses for wearable visual-memory systems. Matter 2023, 6, 925–939.

[41]

Li, J. Y.; Shen, Z. J.; Cao, Y. X.; Tu, X.; Zhao, C.; Liu, Y. N.; Wen, Z. Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy 2022, 103, 107744.

[42]

Zhang, Y. C.; Liu, L.; Tu, B.; Cui, B.; Guo, J. H.; Zhao, X.; Wang, J. Y.; Yan, Y. An artificial synapse based on molecular junctions. Nat. Commun. 2023, 14, 247.

[43]

Dong, Z. L.; Hua, Q. L.; Xi, J. G.; Shi, Y. H.; Huang, T. C.; Dai, X. H.; Niu, J. N.; Wang, B. J.; Wang, Z. L.; Hu, W. G. Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications. Nano Lett. 2023, 23, 3842–3850.

[44]

Shen, Z. J.; Zhao, C.; Kang, L. X.; Sun, Y.; Liu, Y. N.; Mitrovic, I. Z.; Yang, L.; Lim, E. G.; Zeng, Z. M.; Zhao, C. Z. Emerging optical in-memory computing sensor synapses based on low-dimensional nanomaterials for neuromorphic networks. Adv. Intell. Syst. 2022, 4, 2100236.

[45]

Wang, X. M.; Yang, H. H.; Li, E. L.; Cao, C. B.; Zheng, W.; Chen, H. P.; Li, W. W. Stretchable transistor-structured artificial synapses for neuromorphic electronics. Small 2023, 19, 2205395.

[46]

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiN x O2− x /MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

[47]

Won, U. Y.; An Vu, Q.; Park, S. B.; Park, M. H.; Dam Do, V.; Park, H. J.; Yang, H.; Lee, Y. H.; Yu, W. J. Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning. Nat. Commun. 2023, 14, 3070.

[48]

Lei, P. X.; Duan, H.; Qin, L.; Wei, X. H.; Tao, R.; Wang, Z. G.; Guo, F.; Song, M. L.; Jie, W. J.; Hao, J. H. High-performance memristor based on 2D layered BiOI nanosheet for low-power artificial optoelectronic synapses. Adv. Funct. Mater. 2022, 32, 2201276.

[49]

Yang, S. T.; Li, X. Y.; Yu, T. L.; Wang, J.; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lü, W. M.; Yan, S. S. et al. High-performance neuromorphic computing based on ferroelectric synapses with excellent conductance linearity and symmetry. Adv. Funct. Mater. 2022, 32, 2202366.

[50]

Lan, L.; Teng, X.; Zhang, J.; Zhang, X.; Tao, D. C. Learning to purification for unsupervised person re-identification. IEEE Trans. Image Process. 2023, 32, 3338–3353.

[51]

Xu, J. J.; Zhang, Z. X.; Hu, X. L. Extracting semantic knowledge from GANs with unsupervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9654–9668.

[52]

Huo, Y. C.; Bao, H. J.; Peng, Y. F.; Gao, C.; Hua, W.; Yang, Q.; Li, H. F.; Wang, R.; Yoon, S. E. Optical neural network via loose neuron array and functional learning. Nat. Commun. 2023, 14, 2535.

[53]

Wang, Z. R.; Joshi, S.; Savel’ev, S.; Song, W. H.; Midya, R.; Li, Y. N.; Rao, M. Y.; Yan, P.; Asapu, S.; Zhuo, Y. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145.

[54]

Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

File
12274_2023_6382_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2023
Revised: 21 November 2023
Accepted: 28 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors are grateful for the photo provided by Yezhou Ni for image recognition. The authors acknowledge support from the Jiangsu Funding Program for Excellent Postdoctoral Talent, the National Natural Science Foundation of China (No. 52372055), and the Jiangsu Independent Innovation Fund Project of Agricultural Science and Technology (No. CX (21) 3163). The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO).

Return