Journal Home > Volume 17 , Issue 5

Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries, the uncontrolled dendrite growth and infinite volume change impede its practical application. Herein, we report an ideal framework composed of carbonized bacterial cellulose (CBC) nanofibers, which shows intrinsic lithiophilicity to molten lithium without any lithiophilic surface modification. The wetting behavior of molten lithium can be significantly improved because its surface functional groups provide thermodynamical driving force, and the high surface roughness derived from nanocracks leads to rapid infusion in kinetics. The hybrid anode exhibits long cycle life up to 2000 h and excellent deep stripping–platting capacity up to 20 mAh·cm−2. When the anode is assembled with LiFePO4 cathode, the full cell delivers a good cycling stability up to 700 cycles. This is attributed to the intrinsic lithiophilic scaffold, which can not only lower the nucleation barrier of Li and provide uniform nucleation sites for stable Li stripping/plating, but also offer interspace to accommodate volume fluctuation of lithium during long cycling. This work provides a new manner to achieve a series of intrinsic lithiophilic carbon skeletons based on the large family of biomass materials and organic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intrinsic lithiophilic carbon host derived from bacterial cellulose nanofiber for dendrite-free and long-life lithium metal anode

Show Author's information Gangyi Xiong1Jiayu Yu1Yalan Xing1( )Puheng Yang2( )Shichao Zhang1( )
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

Abstract

Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries, the uncontrolled dendrite growth and infinite volume change impede its practical application. Herein, we report an ideal framework composed of carbonized bacterial cellulose (CBC) nanofibers, which shows intrinsic lithiophilicity to molten lithium without any lithiophilic surface modification. The wetting behavior of molten lithium can be significantly improved because its surface functional groups provide thermodynamical driving force, and the high surface roughness derived from nanocracks leads to rapid infusion in kinetics. The hybrid anode exhibits long cycle life up to 2000 h and excellent deep stripping–platting capacity up to 20 mAh·cm−2. When the anode is assembled with LiFePO4 cathode, the full cell delivers a good cycling stability up to 700 cycles. This is attributed to the intrinsic lithiophilic scaffold, which can not only lower the nucleation barrier of Li and provide uniform nucleation sites for stable Li stripping/plating, but also offer interspace to accommodate volume fluctuation of lithium during long cycling. This work provides a new manner to achieve a series of intrinsic lithiophilic carbon skeletons based on the large family of biomass materials and organic materials.

Keywords: lithium metal anode, lithium dendrite, bacterial cellulose, long cycling life, intrinsic lithiophilicity

References(39)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[3]

Sun, Y. M.; Liu, N. A.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

[4]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[5]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[6]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[7]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[8]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[9]

Choudhury, S.; Wan, C. T. C.; Al Sadat, W. I.; Tu, Z. Y.; Lau, S.; Zachman, M. J.; Kourkoutis, L. F.; Archer, L. A. Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv. 2017, 3, e1602809.

[10]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[11]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[12]

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

[13]

Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

[14]

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

[15]

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

[16]

Piao, Z. H.; Xiao, P. T.; Luo, R. P.; Ma, J. B.; Gao, R. H.; Li, C.; Tan, J. Y.; Yu, K.; Zhou, G. M.; Cheng, H. M. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, 2108400.

[17]

Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 2018, 13, 337–344

[18]

Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623.

[19]

Ni, S. Y.; Zhang, M. T.; Li, C.; Gao, R. H.; Sheng, J. Z.; Wu, X.; Zhou, G. M. A 3D framework with Li3N-Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv. Mater. 2023, 35, 2209028.

[20]

Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.

[21]

Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

[22]

Bao, J.; Pei, H. J.; Yue, X. Y.; Li, X. L.; Ma, C.; Luo, R. J.; Du, C. Y.; Zhou, Y. N. In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode. Nano Res. 2023, 16, 8345–8353

[23]

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

[24]

Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 2018, 28, 1803023.

[25]

Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635

[26]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[27]

Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

[28]

Yang, G. H.; Chen, J. D.; Xiao, P. T.; Agboola, P. O.; Shakir, I.; Xu, Y. X. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. J. Mater. Chem. A 2018, 6, 9899–9905.

[29]

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

[30]

Li, S. Y.; Liu, Q. L.; Zhou, J. J.; Pan, T.; Gao, L. N.; Zhang, W. D.; Fan, L.; Lu, Y. Y. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries. Adv. Funct. Mater. 2019, 29, 1808847.

[31]

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

[32]

Wang, J. Y.; Wang, H. S.; Xie, J.; Yang, A. K.; Pei, A.; Wu, C. L.; Shi, F. F.; Liu, Y. Y.; Lin, D. C.; Gong, Y. J. et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14, 345–350.

[33]

Wang, S. H.; Yue, J. P.; Dong, W.; Zuo, T. T.; Li, J. Y.; Liu, X. L.; Zhang, X. D.; Liu, L.; Shi, J. L.; Yin, Y. X. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 2019, 10, 4930.

[34]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[35]

Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv Mater. 2019, 31, e1807131.

[36]

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

[37]

Liu, S. F.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Yao, Z. J.; Zhang, L. Y.; Cheng, X. B.; Wang, X. L.; Zhang, Q.; Tu, J. P. 3D TiC/C core/shell nanowire skeleton for dendrite-free and long-life lithium metal anode. Adv. Energy Mater. 2018, 8, 1702322

[38]

Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 2018, 8, 1703505.

[39]

Fan, L.; Li, S. Y.; Liu, L.; Zhang, W. D.; Gao, L. N.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Y. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv. Energy Mater. 2018, 8, 1802350.

File
12274_2023_6380_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2023
Revised: 28 November 2023
Accepted: 28 November 2023
Published: 28 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by Defense Industrial Technology Development Program (No. JCKY2020601C023).

Return