Journal Home > Volume 17 , Issue 5

Tandem catalysis, capable of decoupling individual steps, provides a feasible way to build a high-efficiency CO2 electro-conversion system for multicarbons (C2+). The construction of electrocatalytic materials is one of focusing issues. Herein, we fabricated a single atom involved multivalent oxide-derived Cu composite material and found it inclined to reconstruct into oxygen-deficient multiphase Cu based species hybridized with monatomic Ni on N doped C matrix. In this prototype, rapid CO generation and C−C coupling are successively achieved on NiN4 sites and surface amorphized Cu species with defects, resembling a micro-production line. In this way, the in situ formed tandem catalyst exhibited a high Faradaic efficiency (FE) of ~ 78% for C2+ products along with satisfactory durability over 50 h. Particularly, the reconstruction-induced amorphous layer with abundant asymmetric sites should be favorable to improve the ethanol selectivity (FE: 63%), which is about 10 times higher than that of the non-tandem Cu-based contrast material. This work offers a new approach for manipulating tandem catalyst systems towards enhancing C2+ products.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ reconstruction induced oxygen-deficient multiphase Cu based species hybridized with Ni single atoms as tandem platform for CO2 electroreduction

Show Author's information Juzhe Liu1Yuheng Wang1Pengpeng Mo1Feng Yang1Kaiqi Jiang1Zhixiang Cheng1Yuxuan Liu1Zhiyi Sun2Zheng Liu3,4( )Yimei Zhang1( )Wenxing Chen2( )
The Key Laboratory of Resources and Environmental System Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

Abstract

Tandem catalysis, capable of decoupling individual steps, provides a feasible way to build a high-efficiency CO2 electro-conversion system for multicarbons (C2+). The construction of electrocatalytic materials is one of focusing issues. Herein, we fabricated a single atom involved multivalent oxide-derived Cu composite material and found it inclined to reconstruct into oxygen-deficient multiphase Cu based species hybridized with monatomic Ni on N doped C matrix. In this prototype, rapid CO generation and C−C coupling are successively achieved on NiN4 sites and surface amorphized Cu species with defects, resembling a micro-production line. In this way, the in situ formed tandem catalyst exhibited a high Faradaic efficiency (FE) of ~ 78% for C2+ products along with satisfactory durability over 50 h. Particularly, the reconstruction-induced amorphous layer with abundant asymmetric sites should be favorable to improve the ethanol selectivity (FE: 63%), which is about 10 times higher than that of the non-tandem Cu-based contrast material. This work offers a new approach for manipulating tandem catalyst systems towards enhancing C2+ products.

Keywords: reconstruction, amorphous, CO2 reduction reaction, single atom, tandem catalysis

References(49)

[1]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[2]

Kong, X. D.; Zhao, J. K.; Xu, Z. F.; Wang, Z. Y.; Wu, Y. Y.; Shi, Y. H.; Li, H. L.; Ma, C. X.; Zeng, J.; Geng, Z. G. Dynamic metal–ligand coordination boosts CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 14903–14911.

[3]

Wang, Y. C.; Wang, Q. C.; Wu, J.; Zhao, X.; Xiong, Y.; Luo, F. H.; Lei, Y. P. Asymmetric atomic sites make different: Recent progress in electrocatalytic CO2 reduction. Nano Energy 2022, 103, 107815.

[4]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[5]

Su, J. J.; Liu, Y.; Song, Y.; Huang, L. B.; Guo, W. H.; Cao, X. H.; Dou, Y. B.; Cheng, L.; Li, G.; Hu, Q. S. et al. Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat 2022, 3, 35–53.

[6]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

[7]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal–support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[8]

Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.

[9]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[10]

Cao, B.; Li, F. Z.; Gu, J. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. 2022, 12, 9735–9752.

[11]

Jiang, J. C.; Chen, J. C.; Zhao, M. D.; Yu, Q.; Wang, Y. G.; Li, J. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 7116–7123.

[12]

Xia, T.; Wan, J. W.; Yu, R. B. Progress of the structure–property correlation of heteroatomic coordination structured carbon-based single-atom electrocatalysts. Chem. J. Chin. Univ. 2022, 43, 20220162.

[13]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

[14]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[15]

Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.

[16]

Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.

[17]

Zhang, Y.; Li, P.; Zhao, C. M.; Zhou, G.; Zhou, F. Y.; Zhang, Q. T.; Su, C. L.; Wu, Y. E. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci. Bull. 2022, 67, 1679–1687.

[18]

Yan, T. T.; Wang, P.; Sun, W. Y. Single-site metal-organic framework and copper foil tandem catalyst for highly selective CO2 electroreduction to C2H4. Small 2023, 19, 2206070.

[19]

Hu, X. S.; Li, J. Y.; Zhou, Z. Q.; Wen, L. Y. Tandem electroreduction of CO2 to programmable acetate and syngas via single-nickel-atom-encapsulated copper nanocatalysts. ACS Materials Lett. 2023, 5, 85–94.

[20]

Lai, W. C.; Ma, Z. S.; Zhang, J. W.; Yuan, Y. L.; Qiao, Y.; Huang, H. W. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress. Adv. Funct. Mater. 2022, 32, 2111193.

[21]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[22]

Zhang, A.; Liang, Y. X.; Li, H. P.; Zhang, B. Y.; Liu, Z. H.; Chang, Q. X.; Zhang, H.; Zhu, C. F.; Geng, Z. G.; Zhu, W. G. et al. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate. Nano Lett. 2020, 20, 8229–8235

[23]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[24]

Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.

[25]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[26]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived n-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[27]

Han, L.; Tian, B. Q.; Gao, X. X.; Zhong, Y.; Wang, S. N.; Song, S. C.; Wang, Z. L.; Zhang, Y.; Kuang, Y.; Sun, X. M. Copper nanowire with enriched high-index facets for highly selective CO2 reduction. SmarMat 2022, 3, 142–150.

[28]

Enayati, M. H.; Mohamed, F. A. Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 2014, 59, 394–416.

[29]

Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

[30]

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

[31]

Zheng, S. J.; Cheng, H.; Yu, J.; Bie, Q.; Chen, J. D.; Wang, F.; Wu, R.; Blackwood, D. J.; Chen, J. S. Three-dimensional ordered porous N-doped carbon-supported accessible Ni-N x active sites for efficient CO2 electroreduction. Rare Met. 2023, 42, 1800–1807.

[32]

Zhou, J. S.; Song, H. H.; Ma, L. L.; Chen, X. H. Magnetite/graphene nanosheet composites: Interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv. 2011, 1, 782–791.

[33]

Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.

[34]

Liang, S. Y.; Zhang, T. Y.; Zheng, Y.; Xue, T. S.; Wang, Z.; Wang, Q.; He, H. Maximizing the utilization of single-atom sites on carbon-based catalysts for efficient CO2 electroreduction with ultrahigh turnover frequency. Appl. Catal. B Environ. 2023, 333, 122801.

[35]

Zhang, J. F.; Wang, Y.; Li, Z. Y.; Xia, S.; Cai, R.; Ma, L.; Zhang, T. Y.; Ackley, J.; Yang, S. Z.; Wu, Y. C. et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv. Sci. (Weinh.) 2022, 9, 2200454.

[36]

Chen, Y. X.; Guo, Y. H.; Hu, H. X.; Wang, S.; Lin, Y.; Huang, Y. C. Achieving low temperature formaldehyde oxidation: A case study of NaBH4 reduced cobalt oxide nanowires. Inorg. Chem. Commun. 2017, 82, 20–23.

[37]

Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Cuenya, B. R. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.

[38]

Zhao, S.Y.; Liu, A. H.; Li, Y. H.; Wen, Y. Y.; Gao, X. Q.; Chen, Q. L. Boosting the electrocatalytic CO2 reduction reaction by nanostructured metal materials via defects engineering. Nanomaterials (Basel) 2022, 12, 2389.

[39]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[40]

Mu, S. J.; Lu, H. L.; Wu, Q. B.; Li, L.; Zhao, R. J.; Long, C.; Cui, C. H. Hydroxyl radicals dominate reoxidation of oxide-derived Cu in electrochemical CO2 reduction. Nat. Commun. 2022, 13, 3694.

[41]

Liu, J. Z.; Guo, L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4, 2850–2873

[42]

Gu, Z. X.; Yang, N.; Han, P.; Kuang, M.; Mei, B. B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2018, 3, 1800449.

[43]

Periasamy, A. P.; Ravindranath, R.; Kumar, S. M. S.; Wu, W. P.; Jian, T. R.; Chang, H. T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869–11880.

[44]

Liu, J. Z.; Hu, Q.; Wang, Y.; Yang, Z.; Fan, X. Y.; Liu, L. M.; Guo, L. Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proc. Natl. Acad. Sci. USA 2020, 117, 21906–21913.

[45]

Wang, H. Z.; Bi, X. Z.; Yan, Y. F.; Zhao, Y. Z.; Yang, Z. X.; Ning, H.; Wu, M. B. Efficient electrocatalytic reduction of CO2 to ethanol enhanced by spacing effect of Cu-Cu in Cu2− x Se nanosheets. Adv. Funct. Mater. 2023, 33, 2214946.

[46]

Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary Operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

[47]

Zhang, T. T.; Yuan, B. W.; Wang, W. L.; He, J.; Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem., Int. Ed. 2023, 62, e202302096.

[48]

Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cu δ + species. Angew. Chem., Int. Ed. 2022, 61, e202205909.

[49]

Chen, J. Y.; Wang, D. S.; Yang, X. X.; Cui, W. J.; Sang, X. H.; Zhao, Z. L.; Wang, L. G.; Li, Z. J.; Yang, B.; Lei, L. C. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202215406.

File
12274_2023_6375_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2023
Revised: 14 November 2023
Accepted: 27 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52302092 and 22375019), the Beijing Natural Science Foundation (No. 2212018), the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 2022CX01011), the Fundamental Research Funds for the Central Universities (Nos. 2023MS057 and JB 2022004), and the Open Research Fund of State Environmental Protection Key Laboratory of Eco-industry, Chinese Research Academy of Environmental Sciences (No. 2022KFF-07). The authors thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF) and 1W1B beamline in Beijing Synchrotron Radiation Facility (BSRF) for help with characterizations. The authors acknowledge the critical testing work supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Return