Journal Home > Volume 17 , Issue 5

Doping foreign metal atoms into the substrate of transition metal dichalcogenides (TMDs) enables the formation of diverse atomic structure configurations, including isolated atoms, chains, and clusters. Therefore, it is very important to reasonably control the atomic structure and determine the structure–activity relationship between the atomic configurations and the hydrogen evolution reaction (HER) performance. Although numerous studies have indicated that doping can yield diverse atomic structure configurations, there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance. Here, diverse atomic structure configurations of adsorptive doping, substitutional doping, and TMDs alloys are summarized. The structure–activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory (DFT) calculations. These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER. Finally, we have summarized the current challenges and future opportunities, offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.


menu
Abstract
Full text
Outline
About this article

Diverse atomic structure configurations of metal-doped transition metal dichalcogenides for enhancing hydrogen evolution

Show Author's information Longlu Wang1( )Yuxin Zhang1Chen Gu1Haoxuan Yu1Yanling Zhuang1Zechao Zhuang2( )
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA

Abstract

Doping foreign metal atoms into the substrate of transition metal dichalcogenides (TMDs) enables the formation of diverse atomic structure configurations, including isolated atoms, chains, and clusters. Therefore, it is very important to reasonably control the atomic structure and determine the structure–activity relationship between the atomic configurations and the hydrogen evolution reaction (HER) performance. Although numerous studies have indicated that doping can yield diverse atomic structure configurations, there remains an incomplete understanding of the relationship between atomic configurations within the lattice of TMDs and their performance. Here, diverse atomic structure configurations of adsorptive doping, substitutional doping, and TMDs alloys are summarized. The structure–activity relationship between different atomic configurations and HER performance can be determined by micro-nanostructure devices and density functional theory (DFT) calculations. These diverse atomic structure configurations are of great significance for activating the inert basal plane of TMDs and improving the catalytic activity of HER. Finally, we have summarized the current challenges and future opportunities, offering new perspectives for the design of highly active and stable metal-doped TMDs catalysts.

Keywords: transition metal dichalcogenides (TMDs), hydrogen evolution reaction (HER), dopant effect, diverse atomic structure configurations

References(128)

[1]

Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

[2]

Ledendecker, M.; Mondschein, J. S.; Kasian, O.; Geiger, S.; Göhl, D.; Schalenbach, M.; Zeradjanin, A.; Cherevko, S.; Schaak, R. E.; Mayrhofer, K. Stability and activity of non-noble-metal-based catalysts toward the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 9767–9771.

[3]

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

[4]

Yu, P.; Wang, F. M.; Shifa, T. A.; Zhan, X. Y.; Lou, X. D.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 2019, 58, 244–276.

[5]

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

[6]

Li, Y.; Hua, Y. Q.; Sun, N.; Liu, S. J.; Li, H. X.; Wang, C.; Yang, X. Y.; Zhuang, Z. C.; Wang, L. L. Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. 2023, 16, 8712–8728.

[7]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[8]

Tian, S. F.; Tang, Q. Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction via single atom doping. J. Mater. Chem. C 2021, 9, 6040–6050.

[9]

Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

[10]

Liu, R.; Fei, H. L.; Ye, G. L. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten 2020, 2, 147–161.

[11]

Balasubramaniam, B.; Singh, N.; Kar, P.; Tyagi, A.; Prakash, J.; Gupta, R. K. Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Mol. Syst. Des. Eng. 2019, 4, 804–827.

[12]

Zhang, T. Y.; Fujisawa, K.; Zhang, F.; Liu, M. Z.; Lucking, M. C.; Gontijo, R. N.; Lei, Y.; Liu, H.; Crust, K.; Granzier-Nakajima, T. et al. Universal in situ substitutional doping of transition metal dichalcogenides by liquid-phase precursor-assisted synthesis. ACS Nano 2020, 14, 4326–4335.

[13]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[14]

Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. L. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 2023, 16, 4381–4398.

[15]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[16]
Park, H. Y.; Dugasani, S. R.; Kang, D. H.; Jeon, J.; Jang, S. K.; Lee, S.; Roh, Y.; Park, S. H.; Park, J. H. n- and p-Type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano 2014 , 8, 11603–11613.
[17]

Lee, J.; Heo, J.; Lim, H. Y.; Seo, J.; Kim, Y.; Kim, J.; Kim, U.; Choi, Y.; Kim, S. H.; Yoon, Y. J. et al. Defect-induced in situ atomic doping in transition metal dichalcogenides via liquid-phase synthesis toward efficient electrochemical activity. ACS Nano 2020, 14, 17114–17124.

[18]

Fu, Y. J.; Long, M. S.; Gao, A. Y.; Wang, Y.; Pan, C.; Liu, X. W.; Zeng, J. W.; Xu, K.; Zhang, L. L.; Liu, E. F. et al. Intrinsic p-type W-based transition metal dichalcogenide by substitutional Ta-doping. Appl. Phys. Lett. 2017, 111, 043502.

[19]

Wang, Y.; Slassi, A.; Stoeckel, M. A.; Bertolazzi, S.; Cornil, J.; Beljonne, D.; Samorì, P. Doping of monolayer transition-metal dichalcogenides via physisorption of aromatic solvent molecules. J. Phys. Chem. Lett. 2019, 10, 540–547.

[20]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[21]

Zheng, J. X.; Liu, X.; Zheng, Y. G.; Gandi, A. N.; Kuai, X. X.; Wang, Z. C.; Zhu, Y. P.; Zhuang, Z. C.; Liang, H. F. Ag x Zn y protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano Lett. 2023, 23, 6156–6163.

[22]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[23]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[24]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S.et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[25]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. 2022, 134, e202203522.

[26]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[27]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[28]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[29]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[30]

Hou, X. B.; Jiang, T. Y.; Xu, X. J.; Wang, X. K.; Zhou, J.; Xie, H. M.; Liu, Z. C.; Chu, L.; Huang, M. H. Coupling of NiFe-based metal-organic framework nanosheet arrays with embedded Fe-Ni3S2 clusters as efficient bifunctional electrocatalysts for overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2207074–2207080.

[31]

Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

[32]

Lin, Z.; Carvalho, B. R.; Kahn, E.; Lv, R. T.; Rao, R.; Terrones, H.; Pimenta, M. A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002.

[33]

Joseph, S.; Mohan, J.; Lakshmy, S.; Thomas, S.; Chakraborty, B.; Thomas, S.; Kalarikkal, N. A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Mater. Chem. Phys. 2023, 297, 127332.

[34]

Xia, H.; Shi, Z. D.; Gong, C. S.; He, Y. M. Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. J. Mater. Chem. A 2022, 10, 19067–19089.

[35]

Lin, Y. C.; Torsi, R.; Geohegan, D. B.; Robinson, J. A.; Xiao, K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers. Adv. Sci. 2021, 8, 2004249.

[36]

Song, A. L.; Song, S. L.; Duanmu, M. M.; Tian, H.; Liu, H.; Qin, X. J.; Shao, G. J.; Wang, G. X. Recent progress of non-noble metallic heterostructures for the electrocatalytic hydrogen evolution. Small Sci. 2023, 3, 2300036.

[37]

Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

[38]

Pan, M. H.; Mullen, J. T.; Wook Kim, K. First-principles analysis of magnetically doped transition-metal dichalcogenides. J. Phys. D: Appl. Phys. 2021, 54, 025002.

[39]

Ouyang, B.; Lan, G. Q.; Guo, Y. S.; Mi, Z. T.; Song, J. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation. Appl. Phys. Lett. 2015, 107, 191903.

[40]

Sahoo, K. R.; Guha, A.; Bawari, S.; Sharma, R.; Maity, D.; Narayanan, T. N. Basal plane activation of MoS2 by the substitutional doping of vanadium toward electrocatalytic hydrogen generation. ACS Appl. Energy Mater. 2022, 5, 11263–11270.

[41]

Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

[42]

Tedstone, A. A.; Lewis, D. J.; O’Brien, P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides. Chem. Mater. 2016, 28, 1965–1974.

[43]

Li, G.; Feng, S. Y.; Li, J.; Deng, P. L.; Tian, X. L.; Wang, C. T.; Hua, Y. J. P-Ni4Mo catalyst for seawater electrolysis with high current density and durability. Chin. J. Struct. Chem. 2022, 41, 2207068–2207073.

[44]

Abidi, N.; Bonduelle-Skrzypczak, A.; Steinmann, S. N. How to dope the basal plane of 2H-MoS2 to boost the hydrogen evolution reaction. Electrochim. Acta 2023, 439, 141653.

[45]

Wu, R.; Xu, J.; Zhao, C. L.; Su, X. Z.; Zhang, X. L.; Zheng, Y. R.; Yang, F. Y.; Zheng, X. S.; Zhu, J. F.; Luo, J. et al. Dopant triggered atomic configuration activates water splitting to hydrogen. Nat. Commun. 2023, 14, 2306.

[46]

Li, S.; Zhou, S.; Wang, X. C.; Tang, P.; Pasta, M.; Warner, J. H. Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Mater. Today Energy 2019, 13, 134–144.

[47]

Chia, H. L.; Mayorga-Martinez, C. C.; Sofer, Z.; Lazar, P.; Webster, R. D.; Pumera, M. Vanadium dopants: A boon or a bane for molybdenum dichalcogenides-based electrocatalysis applications. Adv. Funct. Mater. 2021, 31, 2009083.

[48]

Ma, W. Q.; Li, D. Y.; Liao, L. L.; Zhou, H. Q.; Zhang, F. M.; Zhou, X.; Mo, Y. X.; Yu, F. High-performance bifunctional porous iron-rich phosphide/nickel nitride heterostructures for alkaline seawater splitting. Small 2023, 19, 2207082.

[49]

Mo, Y. X.; Liao, L. L.; Li, D. Y.; Pan, R. W.; Deng, Y. H.; Tan, Y. L.; Zhou, H. Q. Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries. Chin. Chem. Lett. 2023, 34, 107130.

[50]

Zhou, Y.; Zhang, J.; Song, E. H.; Lin, J. H.; Zhou, J. D.; Suenaga, K.; Zhou, W.; Liu, Z.; Liu, J. J.; Lou, J. et al. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun. 2020, 11, 2253.

[51]
Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016 , 28, 7472–7477.
[52]

Kozhakhmetov, A.; Schuler, B.; Tan, A. M. Z.; Cochrane, K. A.; Nasr, J. R.; El-Sherif, H.; Bansal, A.; Vera, A.; Bojan, V.; Redwing, J. M. et al. Scalable substitutional re-doping and its impact on the optical and electronic properties of tungsten diselenide. Adv. Mater. 2020, 32, 2005159.

[53]

Wang, R. N.; Guo, Z. L.; Tan, X. L.; Zhang, J. F.; Yang, L.; Wang, W.; Cao, L. X.; Dong, B. H. Atmosphere plasma treatment and Co heteroatoms doping on basal plane of colloidal 2D VSe2 nanosheets for enhanced hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 32425–32434.

[54]

He, Q.; Wan, Y. Y.; Jiang, H. L.; Wu, C. Q.; Sun, Z. T.; Chen, S. M.; Zhou, Y.; Chen, H. P.; Liu, D. B.; Haleem, Y. A. et al. High-metallic-phase-concentration Mo1− x W x S2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Res. 2018, 11, 1687–1698.

[55]

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

[56]

Ou, M.; Ma, L.; Xu, L. M.; Yang, Z. M.; Li, H. Z. Hydrothermal synthesis of few-layer and edge-rich cobalt-doped molybdenum selenide/nitrogenated graphene composite and investigation of its electrocatalytic activity for hydrogen evolution reaction. Nano 2016, 11, 1650107.

[57]

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

[58]

Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. WSe2-VSe2 alloyed nanosheets to enhance the catalytic performance of hydrogen evolution reaction. ACS Nano 2022, 16, 12569–12579.

[59]

Yoshimura, A.; Koratkar, N.; Meunier, V. Substitutional transition metal doping in MoS2: A first-principles study. Nano Express 2020, 1, 010008.

[60]

Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

[61]

Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

[62]

Li, B. J.; Nie, K. K.; Zhang, Y. J.; Yi, L. X.; Yuan, Y. L.; Chong, S. K.; Liu, Z. Q.; Huang, W. Engineering single-layer hollow structure of transition metal dichalcogenides with high 1T-phase purity for hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303285.

[63]

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

[64]
Peng, Q.; Qi, X. S.; Gong, X.; Chen, Y. L. 1T-MoS2 coordinated bimetal atoms as active centers to facilitate hydrogen generation. Materials 2021 , 14, 4073.
[65]

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

[66]

Shi, Z. Y.; Zhang, X.; Lin, X. Q.; Liu, G. G.; Ling, C. Y.; Xi, S. B.; Chen, B.; Ge, Y. Y.; Tan, C. L.; Lai, Z. C. et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300–305.

[67]

Vega-Granados, K.; Gochi-Ponce, Y.; Alonso-Vante, N. Electrochemical interfaces on chalcogenides: Some structural perspectives and synergistic effects of single-surface active sites. Curr. Opin. Electrochem. 2022, 33, 100955.

[68]

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

[69]

Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.

[70]

Jin, Y. Y.; Zeng, Z. Y.; Xu, Z. W.; Lin, Y. C.; Bi, K. X.; Shao, G. L.; Hu, T. S.; Wang, S. S.; Li, S. S.; Suenaga, K. et al. Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers. Chem. Mater. 2019, 31, 3534–3541.

[71]

Kadam, S. R.; Enyashin, A. N.; Houben, L.; Bar-Ziv, R.; Bar-Sadan, M. Ni-WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 1403–1416.

[72]

Mo, Y. X.; Ni, Y. F.; Li, X.; Pan, R. W.; Tang, Y. X.; Deng, Y. H.; Xiao, B. B.; Tan, Y. L.; Yu, F. An efficient pH-universal non-noble hydrogen-evolving electrocatalyst from transition metal phosphides-based heterostructures. Int. J. Hydrogen Energy 2023, 48, 31101–31109.

[73]

Qiu, Y.; Liu, J. Z.; Sun, M. X.; Yang, J. F.; Liu, J. Z.; Zhang, X. Y.; Liu, X. J.; Zhang, L. X. Rational design of electrocatalyst with abundant Co/MoN heterogeneous domains for accelerating hydrogen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2207040–2207045.

[74]

Zhang, F. M.; Liu, Y. L.; Yu, F.; Pang, H. J.; Zhou, X.; Li, D. Y.; Ma, W. Q.; Zhou, Q.; Mo, Y. X.; Zhou, H. Q. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting. ACS Nano 2023, 17, 1681–1692.

[75]

Yoo, H.; Heo, K.; Ansari, M. H. R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832.

[76]

Hu, Z. N.; Zhao, Y. X.; Zou, W. T.; Lu, Q.; Liao, J. H.; Li, F. F.; Shang, M. P.; Lin, L.; Liu, Z. F. Doping of graphene films: Open the way to applications in electronics and optoelectronics. Adv. Funct. Mater. 2022, 32, 2203179.

[77]

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

[78]

Onofrio, N.; Guzman, D.; Strachan, A. Novel doping alternatives for single-layer transition metal dichalcogenides. J. Appl. Phys. 2017, 122, 185102.

[79]

Zhang, J.; Zhu, Y.; Tebyetekerwa, M.; Li, D. L.; Liu, D.; Lei, W. W.; Wang, L. F.; Zhang, Y. P.; Lu, Y. R. Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors. ACS Appl. Nano Mater. 2021, 4, 769–777.

[80]

Zhao, Y. D.; Xu, K.; Pan, F.; Zhou, C. J.; Zhou, F. C.; Chai, Y. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 2017, 27, 1603484.

[81]

Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, 2, 1800094.

[82]

Kwak, I. H.; Kwon, I. S.; Zewdie, G. M.; Debela, T. T.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Polytypic phase transition of Nb1− x V x Se2 via colloidal synthesis and their catalytic activity toward hydrogen evolution reaction. ACS Nano 2022, 16, 4278–4288.

[83]

Feng, S. M.; Lin, Z.; Gan, X.; Lv, R. T.; Terrones, M. Doping two-dimensional materials: Ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horiz. 2017, 2, 72–80.

[84]

Kaur, S. P.; Dhilip Kumar, T. J. Tuning structure, electronic, and catalytic properties of non-metal atom doped Janus transition metal dichalcogenides for hydrogen evolution. Appl. Surf. Sci. 2021, 552, 149146.

[85]

Chia, X. Y.; Sutrisnoh, N. A. A.; Sofer, Z.; Luxa, J.; Pumera, M. Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-doped WSe2 for electrocatalysis. Chem.- Eur. J. 2018, 24, 3199–3208.

[86]
Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021 , 33, 1907818.
[87]

Wang, R.; Han, J. C.; Xu, P.; Gao, T. L.; Zhong, J.; Wang, X. J.; Zhang, X. H.; Li, Z. J.; Xu, L. L.; Song, B. Dual-enhanced doping in ReSe2 for efficiently photoenhanced hydrogen evolution reaction. Adv. Sci. 2020, 7, 2000216.

[88]

Cheng, R. Q.; Min, Y. L.; Li, H. X.; Fu, C. P. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications. Nano Energy 2023, 115, 108718.

[89]

Kwon, I. S.; Kwak, I. H.; Debela, T. T.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Phase-transition Mo1− x V x Se2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano 2021, 15, 14672–14682.

[90]

Vasu, K.; Meiron, O. E.; Enyashin, A. N.; Bar-Ziv, R.; Bar-Sadan, M. Effect of Ru doping on the properties of MoSe2 nanoflowers. J. Phys. Chem. C 2019, 123, 1987–1994.

[91]

Xiong, L. W.; Qiu, Y. F.; Peng, X.; Liu, Z. T.; Chu, P. K. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy 2022, 104, 107882.

[92]

Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuila, T. Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B: Environ. 2019, 254, 432–442.

[93]

Kuraganti, V.; Jain, A.; Bar-Ziv, R.; Ramasubramaniam, A.; Bar-Sadan, M. Manganese doping of MoSe2 promotes active defect sites for hydrogen evolution. ACS Appl. Mater. Interfaces 2019, 11, 25155–25162.

[94]

Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

[95]

Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping. Adv. Funct. Mater. 2021, 31, 2006941.

[96]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[97]

Liu, X.; Jiang, X. X.; Shao, G. G.; Xiang, H. Y.; Li, Z. W.; Jin, Y. Y.; Chen, Y.; Jiang, H. L.; Li, H. M.; Shui, J. L. et al. Activating the electrocatalysis of MoS2 basal plane for hydrogen evolution via atomic defect configurations. Small 2022, 18, 2200601.

[98]

Lang, C. G.; Jiang, W. B.; Yang, C. J.; Zhong, H.; Chen, P. R.; Wu, Q. L.; Yan, X. C.; Dong, C. L.; Lin, Y.; Ouyang, L. Z. et al. Facile and scalable mechanochemical synthesis of defective MoS2 with Ru single atoms toward high-current-density hydrogen evolution. Small 2023, 19, 2300807.

[99]

Son, E.; Lee, S.; Seo, J.; Kim, U.; Kim, S. H.; Baik, J. M.; Han, Y. K.; Park, H. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution. ACS Nano 2023, 17, 10817–10826.

[100]
Wang, X.; Wu, J.; Zhang, Y. W.; Sun, Y.; Ma, K. K.; Xie, Y.; Zheng, W. H.; Tian, Z.; Kang, Z.; Zhang, Y. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration. Adv. Mater., in press, https://doi.org/10.1002/adma.202206576.
[101]

Aliaga, J.; Vera, P.; Araya, J.; Ballesteros, L.; Urzúa, J.; Farías, M.; Paraguay-Delgado, F.; Alonso-Núñez, G.; González, G.; Benavente, E. Electrochemical hydrogen evolution over hydrothermally synthesized Re-doped MoS2 flower-like microspheres. Molecules 2019, 24, 4631.

[102]

Bose, R.; Seo, M.; Jung, C. Y.; Yi, S. C. Comparative investigation of the molybdenum sulphide doped with cobalt and selenium towards hydrogen evolution reaction. Electrochim. Acta 2018, 271, 211–219.

[103]

Dong, T.; Zhang, X.; Wang, P.; Chen, H. S.; Yang, P. Formation of Ni-doped MoS2 nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution. Electrochim. Acta 2020, 338, 135885.

[104]

Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb-doped monolayer WS2 by liquid-phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

[105]

Yang, F.; Shang, J.; Kou, L. Z.; Li, C.; Deng, Z. C. Computational investigation of orderly doped transition metal dichalcogenides: Implications for nanoscale optoelectronic devices. ACS Appl. Nano Mater. 2022, 5, 3824–3831.

[106]

Zhang, T. Y.; Liu, M. Z.; Fujisawa, K.; Lucking, M.; Beach, K.; Zhang, F.; Shanmugasundaram, M.; Krayev, A.; Murray, W.; Lei, Y. et al. Spatial control of substitutional dopants in hexagonal monolayer WS2: The effect of edge termination. Small 2023, 19, 2205800.

[107]

Murai, Y.; Zhang, S. C.; Hotta, T.; Liu, Z.; Endo, T.; Shimizu, H.; Miyata, Y.; Irisawa, T.; Gao, Y. L.; Maruyama, M. et al. Versatile post-doping toward two-dimensional semiconductors. ACS Nano 2021, 15, 19225–19232.

[108]

Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

[109]

Jiang, A. N.; Zhang, B. H.; Li, Z. H.; Jin, G. X.; Hao, J. C. Vanadium-doped WS2 nanosheets grown on carbon cloth as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Asian J. 2018, 13, 1438–1446.

[110]

Kwon, I. S.; Kwak, I. H.; Zewdie, G. M.; Lee, S. J.; Kim, J. Y.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. MoSe2-VSe2-NbSe2 ternary alloy nanosheets to boost electrocatalytic hydrogen evolution reaction. Adv. Mater. 2022, 34, 2205524.

[111]

Kwak, I. H.; Kwon, I. S.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Seo, J.; Ahn, J. P.; Lee, J. H.; Park, J.; Kang, H. S. Phase evolution of Re1− x Mo x Se2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 2020, 14, 11995–12005.

[112]

Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Debela, T. T.; Park, Y. C.; Park, J.; Kang, H. S. Concurrent vacancy and adatom defects of Mo1− x Nb x Se2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 2021, 15, 5467–5477.

[113]

Kwak, I. H.; Kwon, I. S.; Kim, J. Y.; Zewdie, G. M.; Lee, S. J.; Yoo, S. J.; Kim, J. G.; Park, J.; Kang, H. S. Full composition tuning of W1− x Nb x Se2 alloy nanosheets to promote the electrocatalytic hydrogen evolution reaction. ACS Nano 2022, 16, 13949–13958.

[114]

Lei, Y.; Pakhira, S.; Fujisawa, K.; Wang, X. Y.; Iyiola, O. O.; López, N. P.; Elías, A. L.; Rajukumar, L. P.; Zhou, C. J.; Kabius, B. et al. Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (W x Mo1− x S2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 2017, 11, 5103–5112.

[115]

Sarkar, D.; Xie, X. J.; Kang, J. H.; Zhang, H. J.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 2015, 15, 2852–2862.

[116]

Xu, K.; Wang, Y.; Zhao, Y. D.; Chai, Y. Modulation doping of transition metal dichalcogenide/oxide heterostructures. J. Mater. Chem. C 2017, 5, 376–381.

[117]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[118]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[119]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[120]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[121]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 133, 19233–19239.

[122]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[123]

Li, S. S.; Hong, J. H.; Gao, B.; Lin, Y. C.; Lim, H. E.; Lu, X. Y.; Wu, J.; Liu, S.; Tateyama, Y.; Sakuma, Y. et al. Tunable doping of rhenium and vanadium into transition metal dichalcogenides for two-dimensional electronics. Adv. Sci. 2021, 8, 2004438.

[124]

Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

[125]

Li, J. W.; Yin, W. N.; Pan, J. A.; Zhang, Y. B.; Wang, F. S.; Wang, L. L.; Zhao, Q. External field assisted hydrogen evolution reaction. Nano Res. 2023, 16, 8638–8654.

[126]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[127]
Tu, Y.; Xie, L. B.; Zhang, M. Y.; Liu, S. J.; Luo, Z. Z.; Wang, L. L.; Zhao, Q. Recent advances on liquid intercalation and exfoliation of transition metal dichalcogenides: From fundamentals to applications. Nano Res., in press, https://doi.org/10.1007/s12274-023-5946-x.
[128]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 October 2023
Revised: 01 November 2023
Accepted: 23 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51902101), the Natural Science Foundation of Jiangsu Province (No. BK20201381), the Science Foundation of Nanjing University of Posts and Telecommunications (Nos. NY219144 and NY221046), and the National College Student Innovation and Entrepreneurship Training Program (No. 202210293171K).

Return