Journal Home > Volume 17 , Issue 5

Alcohol-based disinfectants have protected people in the coronavirus disease 2019 (COVID-19) pandemic, but olfactory stimuli of ethanol may evoke unpleasant memories associated with stressful situations in the devastating infectious disease. The smell of ethanol in household cleaning and disinfectant products can be covered up by the fragrance additives, and 3-hexenol is especially appreciated for the characteristic, strong odor of green plants. Industrial production of 3-hexenol relies on the selective hydrogenation of 3-hexyn-1-ol, where Lindlar catalyst is normally used for the superior selectivity. Although achieving such catalytic transformation in ethanol solution seems as a direct way to produce a disinfectant with green aroma, a popular consumer product in the post-COVID era, severe leaching of toxic Pb hinders Lindlar catalyst as a promising candidate. We find that the Fe2O3 supported Pd single-atom catalyst is highly selective to fulfill semi-hydrogenation of 3-hexyn-1-ol in 75% ethanol, and the aforementioned household product is readily generated after filtrating the stable, solid catalyst out of reaction solution. Single-atom catalysts have been frequently utilized for fine-chemical synthesis, while in this work they make stunning debut in practical manufacture of daily used products.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct synthesis of a disinfectant with fresh scent of green plants by semi-hydrogenation of alkynol on Pd single-atom catalysts

Show Author's information Yan Jiang1,§Xuetong Yu1,§Yuxia Ji1Xunzhu Jiang3Yalin Guo3Tianbo Li5Liang Gao1,2Rui Lang1,2,4( )Yanxiong Fang1,2,4Botao Qiao3( )Jinxiang Dong1( )
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116024, China
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China

§ Yan Jiang and Xuetong Yu contributed equally to this work.

Abstract

Alcohol-based disinfectants have protected people in the coronavirus disease 2019 (COVID-19) pandemic, but olfactory stimuli of ethanol may evoke unpleasant memories associated with stressful situations in the devastating infectious disease. The smell of ethanol in household cleaning and disinfectant products can be covered up by the fragrance additives, and 3-hexenol is especially appreciated for the characteristic, strong odor of green plants. Industrial production of 3-hexenol relies on the selective hydrogenation of 3-hexyn-1-ol, where Lindlar catalyst is normally used for the superior selectivity. Although achieving such catalytic transformation in ethanol solution seems as a direct way to produce a disinfectant with green aroma, a popular consumer product in the post-COVID era, severe leaching of toxic Pb hinders Lindlar catalyst as a promising candidate. We find that the Fe2O3 supported Pd single-atom catalyst is highly selective to fulfill semi-hydrogenation of 3-hexyn-1-ol in 75% ethanol, and the aforementioned household product is readily generated after filtrating the stable, solid catalyst out of reaction solution. Single-atom catalysts have been frequently utilized for fine-chemical synthesis, while in this work they make stunning debut in practical manufacture of daily used products.

Keywords: coronavirus disease 2019 (COVID-19), hydrogenation, single-atom catalysis, fragrance, household product

References(59)

[1]

Lee, B. K.; Mayhew, E. J.; Sanchez-Lengeling, B.; Wei, J. N.; Qian, W. W.; Little, K. A.; Andres, M.; Nguyen, B. B.; Moloy, T.; Yasonik, J. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 2023, 381, 999–1006.

[2]

Xiang, Y. T.; Yang, Y.; Li, W.; Zhang, L.; Zhang, Q. G.; Cheung, T.; Ng, C. H. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020, 7, 228–229.

[3]

Krusemark, E. A.; Novak, L. R.; Gitelman, D. R.; Li, W. When the sense of smell meets emotion: Anxiety-state-dependent olfactory processing and neural circuitry adaptation. J. Neurosci. 2013, 33, 15324–15332.

[4]

Nie, C. N.; Gao, Y.; Du, X.; Bian, J. L.; Li, H.; Zhang, X.; Wang, C. M.; Li, S. Y. Characterization of the effect of cis-3-hexen-1-ol on green tea aroma. Sci. Rep. 2020, 10, 15506.

[5]

Bönnemann, H.; Brijoux, W.; Siepen, K.; Hormes, J.; Franke, R.; Pollmann, J.; Rothe, J. Surfactant stabilized palladium colloids as precursors for cis-selective alkyne-hydrogenation catalysts. 3.0.CO;2-#">Appl. Organomet. Chem. 1997, 11, 783–796.

[6]

Ou, W. H.; Liu, H.; Wang, R. L. A review on chemical synthesis of leaf alcohol. Curr. Org. Chem. 2022, 26, 1512–1529.

[7]

Bu, J.; Chang, S. Y.; Li, J. J.; Yang, S. Y.; Ma, W. X.; Liu, Z. P.; An, S. Y.; Wang, Y. N.; Li, Z.; Zhang, J. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols. Nat. Commun. 2023, 14, 1533.

[8]

Bushdid, C.; Magnasco, M. O.; Vosshall, L. B.; Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 2014, 343, 1370–1372.

[9]

Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chin. J. Catal. 2022, 43, 1991–2000.

[10]

Hao, Q.; Wu, Y. M.; Liu, C. B.; Shi, Y. M.; Zhang, B. Unveiling subsurface hydrogen inhibition for promoting electrochemical transfer semihydrogenation of alkynes with water. Chin. J. Catal. 2022, 43, 3095–3100.

[11]

Pélisson, C. H.; Nakanishi, T.; Zhu, Y.; Morisato, K.; Kamei, T.; Maeno, A.; Kaji, H.; Muroyama, S.; Tafu, M.; Kanamori, K. et al. Grafted polymethylhydrosiloxane on hierarchically porous silica monoliths: A new path to monolith-supported palladium nanoparticles for continuous flow catalysis applications. ACS Appl. Mater. Interfaces 2017, 9, 406–412.

[12]

Liguori, F.; Barbaro, P.; Said, B.; Galarneau, A.; Santo, V. D.; Passaglia, E.; Feis, A. Unconventional Pd@sulfonated silica monoliths catalysts for selective partial hydrogenation reactions under continuous flow. ChemCatChem 2017, 9, 3245–3258.

[13]

Wang, X. C.; Chu, M. Y.; Wang, M. W.; Zhong, Q. X.; Chen, J. T.; Wang, Z. Q.; Cao, M. H.; Yang, H.; Cheng, T.; Chen, J. X. et al. Unveiling the local structure and electronic properties of PdBi surface alloy for selective hydrogenation of propyne. ACS Nano 2022, 16, 16869–16879.

[14]

Xu, J. M.; Guo, X. W.; Guan, Y. J.; Wu, P. Influence of Pd deposition pH value on the performance of Pd-CuO/SiO2 catalyst for semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). Chin. Chem. Lett. 2022, 33, 349–353.

[15]

Oberhauser, W.; Frediani, M.; Dehcheshmeh, I. M.; Evangelisti, C.; Poggini, L.; Capozzoli, L.; Moghadam, P. N. Selective alkyne semi-hydrogenation by PdCu nanoparticles immobilized on stereocomplexed poly(lactic acid). ChemCatChem 2022, 14, e202101910.

[16]

Mao, S. J.; Zhao, B. W.; Wang, Z.; Gong, Y. T.; Lü, G. F.; Ma, X.; Yu, L. L.; Wang, Y. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 21, 4143–4151.

[17]

Johnston, S. K.; Bryant, T. A.; Strong, J.; Lazzarini, L.; Ibhadon, A. O.; Francesconi, M. G. Stabilization of Pd3− x In1+ x polymorphs with Pd-like crystal structure and their superior performance as catalysts for semi-hydrogenation of Alkynes. ChemCatChem 2019, 11, 2909–2918.

[18]

Johnston, S. K.; Cherkasov, N.; Pérez-Barrado, E.; Aho, A.; Murzin, D. Y.; Ibhadon, A. O.; Francesconi, M. G. Pd3Sn nanoparticles on TiO2 and ZnO supports as catalysts for semi-hydrogenation: Synthesis and catalytic performance. Appl. Catal. A 2017, 544, 40–45.

[19]

Chen, X.; Shi, C.; Wang, X. B.; Li, W. Y.; Liang, C. H. Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun. Chem. 2021, 4, 175.

[20]

González-Fernández, A.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Cárdenas-Lizana, F. Zn-promoted selective gas-phase hydrogenation of tertiary and secondary C4 alkynols over supported Pd. ACS Appl. Mater. Interfaces 2020, 12, 28158–28168.

[21]

Okhlopkova, L. B.; Cherepanova, S. V.; Prosvirin, I. P.; Kerzhentsev, M. A.; Ismagilov, Z. R. Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd-Zn nanoalloys: Effect of composition and heterogenization. Appl. Catal. A General 2018, 549, 245–253.

[22]

Lindlar, H. Ein neuer katalysator für selektive hydrierungen. Helv. Chim. Acta 1952, 35, 446–450.

[23]

McNeice, P.; Müller, M. A.; Medlock, J.; Bonrath, W.; Rockstroh, N.; Bartling, S.; Lund, H.; Junge, K.; Beller, M. The development of a lead-free replacement for the Lindlar catalyst for alkyne semi-hydrogenation using silica supported, N-doped carbon modified cobalt nanoparticles. Green Chem. 2022, 24, 6912–6922.

[24]

Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.

[25]

Sun, L. N.; Shang, Z. L.; Wu, L. L.; Pan, X.; Sun, L. L.; Ouyang, H.; Huang, H.; Zhan, J. Y.; Jia, Y. P.; Zhou, Y. G. et al. One-quarter of COVID-19 patients developed PTSD symptoms: A one-year longitudinal study. Psychiatry Res. 2023, 323, 115161.

[26]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[27]

Huang, X. X.; Ma, Y. J.; Zhi, L. J. Ultrathin nitrogenated carbon nanosheets with single-atom nickel as an efficient catalyst for electrochemical CO2 reduction. Acta Phys. Chim. Sin. 2022, 38, 2011050.

[28]

Qin, T. T.; Dang, Y. R.; Lin, T. J.; Mei, B. B.; Wu, B.; Li, X.; Li, S. G.; Jiang, Z.; Tang, Z. Y.; Zhong, L. S. et al. Single-atom Ru catalyst for selective synthesis of 3-pentanone via ethylene hydroformylation. Green Chem. 2021, 23, 9038–9047.

[29]

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

[30]

Zhang, H. Y.; Tian, W. J.; Duan, X. G.; Sun, H. Q.; Huang, Y. P.; Fang, Y. F.; Wang, S. B. Single-atom catalysts on metal-based supports for solar photoreduction catalysis. Chin. J. Catal. 2022, 43, 2301–2315.

[31]

Chen, Y. X.; Wang, L. J.; Yao, Z. B.; Hao, L. D.; Tan, X. Y.; Masa, J. T.; Robertson, A. L.; Sun, Z. Y. Tuning the coordination structure of single atoms and their interaction with the support for carbon dioxide electroreduction. Acta Phys. Chim. Sin. 2022, 38, 2207024.

[32]

Lin, R. H.; Albani, D.; Fako, E.; Kaiser, S. K.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2019, 58, 504–509.

[33]

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

[34]

Saptal, V. B.; Ruta, V.; Bajada, M. A.; Vilé, G. Single-atom catalysis in organic synthesis. Angew. Chem., Int. Ed. 2023, 62, e202219306.

[35]

Oliver-Meseguer, J.; Leyva-Pérez, A. Single atom and metal cluster catalysts in organic reactions: From the solvent to the solid. ChemCatChem 2023, 15, e202201681.

[36]

Giannakakis, G.; Mitchell, S.; Pérez-Ramírez, J. Single-atom heterogeneous catalysts for sustainable organic synthesis. Trends Chem. 2022, 4, 264–276.

[37]

Chen, Z. X.; Liu, J.; Koh, M. J.; Loh, K. P. Single-atom catalysis: From simple reactions to the synthesis of complex molecules. Adv. Mater. 2022, 34, 2103882.

[38]

Zhang, L. L.; Ren, Y. J.; Liu, W. G.; Wang, A. Q.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672.

[39]

Lv, H. W.; Guo, W. X.; Chen, M.; Zhou, H.; Wu, Y. E. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chin. J. Catal. 2022, 43, 71–91.

[40]

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

[41]

Luo, J. M.; Sun, T. Q.; Sun, Y. G.; Lv, R. W.; Cao, A. M.; Wan, L. J. A general synthesis strategy for hollow metal oxide microspheres enabled by gel-assisted precipitation. Angew. Chem., Int. Ed. 2021, 60, 21377–21383.

[42]

Muravev, V.; Parastaev, A.; Van Den Bosch, Y.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts. Science 2023, 380, 1174–1179.

[43]

Li, Z. J.; Leng, L. P.; Lu, X. W.; Zhang, M. Y.; Xu, Q.; Horton, J. H.; Zhu, J. F. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Res. 2022, 15, 3114–3121.

[44]

Chen, F.; Li, T. B.; Pan, X. L.; Guo, Y. L.; Han, B.; Liu, F.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides. Sci. China Mater. 2020, 63, 959–964.

[45]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[46]

Hadjiivanov, K. I.; Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal., 2002, 47, 307–511.

[47]

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

[48]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd-Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

[49]

Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H.; Chen, Z. R.; Wang, Y. PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13–20.

[50]

Li, M. M.; Xu, X.; Gong, Y. T.; Wei, Z. Z.; Hou, Z. Y.; Li, H. R.; Wang, Y. Ultrafinely dispersed Pd nanoparticles on a CN@MgO hybrid as a bifunctional catalyst for upgrading bioderived compounds. Green Chem. 2014, 16, 4371–4377.

[51]
Saeed, F.; Afzaal, M.; Raza, M. A.; Rasheed, A.; Hussain, M.; Nayik, G. A.; Ansari, M. J. Chapter 4 - Lavender essential oil: Nutritional, compositional, and therapeutic insights. In Essential Oils. Nayik, G. A.; Ansari, M. J., Eds.; Academic Press: New York, 2023; pp 85–101.
[52]

Ciriminna, R.; Pagliaro, M.; Luque, R. Heterogeneous catalysis under flow for the 21st century fine chemical industry. Green Energy Environ. 2021, 6, 161–166.

[53]

Chen, X.; Shi, C.; Liang, C. H. Highly selective catalysts for the hydrogenation of alkynols: A review. Chin. J. Catal. 2021, 42, 2105–2121.

[54]
Bonrath, W.; Medlock, J.; Schütz, J.; Wüstenberg, B.; Netscher, T. Hydrogenation in the vitamins and fine chemicals industry-an overview. In Hydrogenation. Karamé, I., Ed.; InTechOpen: Rijeka, 2012; p 3.
[55]

Guo, Y. L.; Li, Y. Y.; Du, X. R.; Li, L.; Jiang, Q. K.; Qiao, B. T. Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Res. 2022, 15, 10037–10043.

[56]

Huang, L. Q.; Hu, K. C.; Ye, G. G.; Ye, Z. B. Highly selective semi-hydrogenation of alkynes with a Pd nanocatalyst modified with sulfide-based solid-phase ligands. Mol. Catal. 2021, 506, 111535.

[57]

Chen, X. S.; Xu, Y. L.; Xie, Y.; Song, W. L.; Hu, Y.; Yisimayi, A.; Yang, S. J.; Shao, F.; Geng, L.; Wang, Y. et al. Protective effect of plasma neutralization from prior SARS-CoV-2 Omicron infection against BA.5 subvariant symptomatic reinfection. Lancet Reg. Health West. Pac. 2023, 33, 100758.

[58]

Cabán, M.; Rodarte, J. V.; Bibby, M.; Gray, M. D.; Taylor, J. J.; Pancera, M.; Boonyaratanakornkit, J. Cross-protective antibodies against common endemic respiratory viruses. Nat. Commun. 2023, 14, 798.

[59]

Lind, M. L.; Dorion, M.; Houde, A. J.; Lansing, M.; Lapidus, S.; Thomas, R.; Yildirim, I.; Omer, S. B.; Schulz, W. L.; Andrews, J. R. et al. Evidence of leaky protection following COVID-19 vaccination and SARS-CoV-2 infection in an incarcerated population. Nat. Commun. 2023, 14, 5055.

File
12274_2023_6371_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2023
Revised: 12 November 2023
Accepted: 27 November 2023
Published: 28 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 22378079 and 22102210), Guangzhou Projects for Fundamental Research (No. 202102020202), the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (No. 2021GDKLPRB10) and the start-up funding of Guangdong University of Technology.

Return