Journal Home > Volume 17 , Issue 5

The ethanol oxidation reaction (EOR) is crucial in direct alcohol fuel cells and chemical production. However, the electro-oxidation of ethanol molecules to produce acetaldehyde and carbon monoxide can poison the active sites of nanocatalysts, resulting in reduced performance and posing challenges in achieving high activity and selectivity for ethanol oxidation. In this study, we employed a dynamic seed-mediated method to precisely modify highly dispersed Ru sites onto well-defined Pd nanocrystals. The oxyphilic Ru sites serve as "OH valves", regulating water dissociation, while the surrounding Pd atomic arrangements control electronic states for the oxidation dehydrogenation of carbonaceous intermediates. Specifically, Ru0.040@Pd nanocubes (Ru:Pd = 0.04 at.%), featuring (100) facets in Ru-Pd4 configurations, demonstrate an outstanding mass activity of 6.53 A·mgPd−1 in EOR under alkaline conditions, which is 6.05 times higher than that of the commercial Pd/C catalyst (1.08 A·mgPd−1). Through in-situ experiments and theoretical investigations, we elucidate that the hydrophilic Ru atoms significantly promote the dynamic evolution of H2O dissociation into OHads species, while the electron redistribution from Ru to adjacent Pd concurrently adjusts the selective oxidation of C2 intermediates. This host–guest interaction accelerates the subsequent oxidation of carbonaceous intermediates (CH3COads) to acetate, while preventing the formation of toxic *CHx and *CO species, which constitutes the rate-determining step.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

OH regulator of highly dispersed Ru sites on host Pd nanocrystals for selective ethanol electro-oxidation

Show Author's information Zhihe Xiao1Yueguang Chen1( )Renjie Wu1Yuwei He1Chunfeng Shi2( )Leyu Wang1( )
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China

Abstract

The ethanol oxidation reaction (EOR) is crucial in direct alcohol fuel cells and chemical production. However, the electro-oxidation of ethanol molecules to produce acetaldehyde and carbon monoxide can poison the active sites of nanocatalysts, resulting in reduced performance and posing challenges in achieving high activity and selectivity for ethanol oxidation. In this study, we employed a dynamic seed-mediated method to precisely modify highly dispersed Ru sites onto well-defined Pd nanocrystals. The oxyphilic Ru sites serve as "OH valves", regulating water dissociation, while the surrounding Pd atomic arrangements control electronic states for the oxidation dehydrogenation of carbonaceous intermediates. Specifically, Ru0.040@Pd nanocubes (Ru:Pd = 0.04 at.%), featuring (100) facets in Ru-Pd4 configurations, demonstrate an outstanding mass activity of 6.53 A·mgPd−1 in EOR under alkaline conditions, which is 6.05 times higher than that of the commercial Pd/C catalyst (1.08 A·mgPd−1). Through in-situ experiments and theoretical investigations, we elucidate that the hydrophilic Ru atoms significantly promote the dynamic evolution of H2O dissociation into OHads species, while the electron redistribution from Ru to adjacent Pd concurrently adjusts the selective oxidation of C2 intermediates. This host–guest interaction accelerates the subsequent oxidation of carbonaceous intermediates (CH3COads) to acetate, while preventing the formation of toxic *CHx and *CO species, which constitutes the rate-determining step.

Keywords: atomic sites, host–guest interaction, OH regulator, ethanol electro-oxidation

References(28)

[1]

Yan, W.; Li, G.; Cui, S. S.; Park, G. S.; Oh, R.; Chen, W. X.; Cheng, X. Y.; Zhang, J. M.; Li, W. Z.; Ji, L. F. et al. Ga-modification near-surface composition of Pt-Ga/C catalyst facilitates high-efficiency electrochemical ethanol oxidation through a C2 intermediate. J. Am. Chem. Soc. 2023, 145, 17220–17231.

[2]

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

[3]

Chang, J. F.; Wang, G. Z.; Chang, X. X.; Yang, Z. Z.; Wang, H.; Li, B. Y.; Zhang, W.; Kovarik, L.; Du, Y. G.; Orlovskaya, N. et al. Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nat. Commun. 2023, 14, 1346.

[4]

Zhang, X.; Wang, T.; Wang, C.; Hübner, R.; Eychmüller, A.; Zhan, J. H.; Cai, B. Bimetallic Pt-Hg aerogels for electrocatalytic upgrading of ethanol to acetate. Small 2023, 19, 2207557.

[5]

Chen, T.; Xu, S.; Zhao, T. T.; Zhou, X. H.; Hu, J. Q.; Xu, X.; Liang, C. J.; Liu, M.; Ding, W. P. Accelerating ethanol complete electrooxidation via introducing ethylene as the precursor for the C–C bond splitting. Angew. Chem., Int. Ed. 2023, 62, e202308057.

[6]

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd Nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

[7]

Chu, M. Y.; Huang, J. L.; Gong, J.; Qu, Y.; Chen, G. L.; Yang, H.; Wang, X. C.; Zhong, Q. X.; Deng, C. W.; Cao, M. H. et al. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 2022, 15, 3920–3926.

[8]
Ye, N.; Sheng, W. C.; Zhang, R. G.; Yan, B. H.; Jiang, Z.; Fang, T. Interfacial electron engineering of PdSn-Nb N/C for highly efficient cleavage of the C–C bonds in alkaline ethanol electrooxidation. Small, in press, DOI: 10.1002/smll.202304990.
[9]

Wang, W. C.; Shi, X. T.; He, T. O.; Zhang, Z. R.; Yang, X. L.; Guo, Y. J.; Chong, B.; Zhang, W. M.; Jin, M. S. Tailoring amorphous PdCu nanostructures for efficient C–C cleavage in ethanol electrooxidation. Nano Lett. 2022, 22, 7028–7033.

[10]
Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater., in press, DOI:10.1002/adma.202308653.
[11]

Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

[12]

Chen, X. T.; Granda-Marulanda, L. P.; McCrum, I. T.; Koper, M. T. M. How palladium inhibits Co poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 2022, 13, 38.

[13]

Chen, Y. J.; Pei, J. J.; Chen, Z.; Li, A.; Ji, S. F.; Rong, H. P.; Xu, Q.; Wang, T.; Zhang, A. J.; Tang, H. L. et al. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation. Nano Lett. 2022, 22, 7563–7571.

[14]

Wang, Y.; Zheng, M.; Li, Y. R.; Chen, J.; Ye, J. Y.; Ye, C. L.; Li, S. N.; Wang, J.; Zhu, Y. F.; Sun, S. G. et al. Oxygen-bridged long-range dual sites boost ethanol electrooxidation by facilitating C–C bond cleavage. Nano Lett. 2023, 23, 8194–8202.

[15]

Lv, H.; Sun, L. Z.; Wang, Y. Z.; Liu, S. H.; Liu, B. Highly curved, quasi-single-crystalline mesoporous metal nanoplates promote C–C bond cleavage in ethanol oxidation electrocatalysis. Adv. Mater. 2022, 34, 2203612.

[16]

Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

[17]

Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M. S.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.

[18]

Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.

[19]

Xiao, L. P.; Li, G.; Yang, Z.; Chen, K.; Zhou, R. S.; Liao, H. G.; Xu, Q. C.; Xu, J. Engineering of amorphous PtO x interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

[20]

Zhang, Y.; Liu, X. Z.; Liu, T. Y.; Ma, X. Y.; Feng, Y. G.; Xu, B. Y.; Cai, W. B.; Li, Y. F.; Su, D.; Shao, Q. et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: An efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, 2202333.

[21]

Zhao, F. L.; Li, C. Z.; Yuan, Q.; Yang, F.; Luo, B.; Xie, Z. X.; Yang, X. T.; Zhou, Z. Y.; Wang, X. Trimetallic palladium-copper-cobalt alloy wavy nanowires improve ethanol electrooxidation in alkaline medium. Nanoscale 2019, 11, 19448–19454.

[22]

Fang, X.; Wang, L. Q.; Shen, P. K.; Cui, G. F.; Bianchini, C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J. Power Sources 2010, 195, 1375–1378.

[23]

Pei, A.; Li, G.; Zhu, L. H.; Huang, Z. N.; Ye, J. Y.; Chang, Y. C.; Osman, S. M.; Pao, C. W.; Gao, Q. S.; Chen, B. H. et al. Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv. Funct. Mater. 2022, 32, 2208587.

[24]
Li, J. S.; Li, L. M.; Ma, X. Y.; Wang, J.; Zhao, J.; Zhang, Y.; He, R.; Yang, Y. Y.; Cabot, A.; Zhu, Y. F. Unraveling the role of iron on Ni-Fe alloy nanoparticles during the electrocatalytic ethanol-to-acetate process. Nano Res., in press, DOI: 10.1007/s12274-023-6049-4.
[25]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[26]

Zhang, Z. T.; Yang, S. M.; Jiang, R.; Sheng, T.; Shi, C. F.; Chen, Y. G.; Wang, L. Y. Intensifying uneven charge distribution via geometric distortion engineering in atomaically dispersed M-N x /S sites for efficient oxygen electroreduction. Nano Res. 2022, 15, 8928–8935.

[27]

Liu, J. C.; Luo, F.; Li, J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J. Am. Chem. Soc. 2023, 145, 25264–25273.

[28]

Han, A.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

File
12274_2023_6368_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2023
Revised: 23 November 2023
Accepted: 23 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 22275009), SINOPEC (Contact No. 421028), and Fundamental Research Funds for the Central Universities (No. XK2020-02). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF).

Return