AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stretchable on-skin touchless screen sensor enabled by ionic hydrogel

Tianxing Feng1,§Dan Ling1,§Chaoyue Li1,§Wentao Zheng1Shichuan Zhang1Chang Li1Artem Emel’yanov2Alexander S. Pozdnyakov2Lijun Lu1( )Yanchao Mao1( )
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russian Federation

§ Tianxing Feng, Dan Ling, and Chaoyue Li contributed equally to this work.

Show Author Information

Graphical Abstract

A stretchable on-skin touchless screen sensor (OTSS) was demonstrated through an ionic hydrogel-based triboelectric nanogenerator (TENG). We further developed an on-skin noncontact screen operating system, which could unlock a cellphone interface in touchless operation mode on the human skin. This OTSS could provide a direction to develop new-generation screen sensors for future cellphones and personal electronics.

Abstract

Screen sensors are the most commonly used human-machine interfaces in our everyday life, which have been extensively applied in personal electronics like cellphones. Touchless screen sensors are attracting growing interest due to their distinct advantages of high interaction freedom, comfortability, and hand hygiene. However, the material compositions of current touchless screen sensors are rigid and fragile, hardly meeting the needs of wearable and stretchable on-skin electronics development. Additionally, these touchless screen sensors are also restricted by high power consumption, limited gesture types of recognition, and the requirement of light conditions. Here, we report a stretchable on-skin touchless screen sensor (OTSS) enabled by an ionic hydrogel-based triboelectric nanogenerator (TENG). Compared with current touchless screen sensors, the OTSS is stretchable, self-powered, and competent to recognize diverse gestures by making use of charges naturally carried on fingers without the need of sufficient light conditions. An on-skin noncontact screen operating system is further demonstrated on the basis of the OTSS, which could unlock a cellphone interface in touchless operation mode on the human skin. This work for the first time introduces the on-skin touchless concept to screen sensors and offers a direction to develop new-generation screen sensors for future cellphones and personal electronics.

Electronic Supplementary Material

Video
12274_2023_6365_MOESM2_ESM.avi
Download File(s)
12274_2023_6365_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Kim, K. K.; Kim, M.; Pyun, K.; Kim, J.; Min, J.; Koh, S.; Root, S. E.; Kim, J.; Nguyen, B. N. T.; Nishio, Y. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 2023, 6, 64–75.

[2]

Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

[3]

Li, J.; Carlos, C.; Zhou, H.; Sui, J. J.; Wang, Y. K.; Silva-Pedraza, Z.; Yang, F.; Dong, Y. T.; Zhang, Z. Y.; Hacker, T. A. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 2023, 14, 6562.

[4]

Leng, Z. W.; Zhu, P. C.; Wang, X. C.; Wang, Y. F.; Li, P. S.; Huang, W.; Li, B. C.; Jin, R.; Han, N. N.; Wu, J. et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface. Adv. Funct. Mater. 2023, 33, 2211056.

[5]

Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z. et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 9, 2200507.

[6]

Liu, D. J.; Zhu, P. C.; Zhang, F. K.; Li, P. S.; Huang, W. H.; Li, C.; Han, N. N.; Mu, S. R.; Zhou, H.; Mao, Y. C. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res. 2023, 16, 1196–1204.

[7]

Zhao, X. F.; Yang, S. Q.; Wen, X. H.; Huang, Q. W.; Qiu, P. F.; Wei, T. R.; Zhang, H.; Wang, J. C.; Zhang, D. W.; Shi, X. et al. A fully flexible intelligent thermal touch panel based on intrinsically plastic Ag2S semiconductor. Adv. Mater. 2022, 34, 2107479.

[8]

Guo, X. K.; Yang, F.; Sun, X. L.; Bai, Y. J.; Liu, G. J.; Liu, W. B.; Wang, R. G.; He, X. D. Anti-freezing self-adhesive self-healing degradable touch panel with ultra-stretchable performance based on transparent triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2201230.

[9]

He, J.; Zhou, R. H.; Zhang, Y. F.; Gao, W. C.; Chen, T.; Mai, W. J.; Pan, C. F. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 2022, 32, 2107281.

[10]

Gao, G. R.; Yang, F. J.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater. 2020, 32, 2004290.

[11]

Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

[12]
Tsuji, S.; Kohama, T. A proximity and pressure touch screen using mutual capacitance measurement. In Proceedings of the 6th IIAE International Conference on Industrial Application Engineering, Okinawa, Japan, 2018, pp 311–316.
[13]

Gao, S.; Shi, Y. P.; Liu, Q.; Xu, L. J.; Fu, B.; Yang, Z. Y. 4-Dimensional sensing in interactive displays enabled by both capacitive and piezoelectric based touch panel. IEEE Access 2019, 7, 33787–33794

[14]
Chuang, C. T.; Chang, T.; Jau, P. H.; Chang, F. R. Touchless positioning system using infrared LED sensors. In Proceedings of 2014 IEEE International Conference on System Science and Engineering, Shanghai, China, 2014, pp 261–266.
[15]

Kim, J. S.; Yun, S. J.; Kim, Y. S. Low-power motion gesture sensor with a partially open cavity package. Opt. Express 2016, 24, 10537–10546.

[16]
Corenthy, L.; Giordano, M.; Hayden, R.; Griffiths, D.; Jeffrey, C.; Limerick, H.; Georgiou, O.; Carter, T.; Müller, J.; Subramanian, S. Touchless tactile displays for digital signage: Mid-air haptics meets large screens. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 2018, pp D103.
[17]
Rakkolainen, I.; Sand, A.; Raisamo, R. A survey of mid-air ultrasonic tactile feedback. In Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM), San Diego, CA, USA, 2019, pp 94–944.
[18]

Gan, R. Z.; Liang, J. M.; Ahmad, B. I.; Godsill, S. Modeling intent and destination prediction within a Bayesian framework: Predictive touch as a usecase. Data-Centric Eng. 2020, 1, e12.

[19]

Liu, J. X.; Zhang, H. X.; Li, C. K. COMTIS: Customizable touchless interaction system for large screen visualization. Virtual Real. Intell. Hardw. 2020, 2, 162–174.

[20]

Zhang, P. P.; Chen, Y. H.; Guo, Z. H.; Guo, W. B.; Pu, X.; Wang, Z. L. Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer electrodes. Adv. Funct. Mater. 2020, 30, 1909252.

[21]

Zhou, Z. J.; Sun, W. G.; Lv, C. Z.; Gu, X. S.; Ju, J. P.; Li, Y. Q. Ultra-stretchable, antifreezing, and self-healing ZnO nanofluid-based hydrogels for triboelectric nanogenerators and self-powered biosensors. Eur. Polym. J. 2023, 200, 112500.

[22]

Bao, S. X.; Gao, J. T.; Xu, T. F.; Li, N.; Chen, W. X.; Lu, W. Y. Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J. 2021, 411, 128470.

[23]

Xu, L. G.; Huang, Z. K.; Deng, Z. S.; Du, Z. K.; Sun, T. L.; Guo, Z. H.; Yue, K. A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv. Mater. 2021, 33, 2105306.

[24]

Shen, Z. Q.; Zhang, Z. L.; Zhang, N. B.; Li, J. H.; Zhou, P. W.; Hu, F. Q.; Rong, Y.; Lu, B. Y.; Gu, G. Y. High-stretchability, ultralow-hysteresis conductingpolymer hydrogel strain sensors for soft machines. Adv. Mater. 2022, 34, 2203650.

[25]

Su, G. H.; Yin, S. Y.; Guo, Y. H.; Zhao, F.; Guo, Q. Q.; Zhang, X. X.; Zhou, T.; Yu, G. H. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Mater. Horiz. 2021, 8, 1795–1804.

[26]

Ohm, Y.; Pan, C. F.; Ford, M. J.; Huang, X. N.; Liao, J. H.; Majidi, C. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 2021, 4, 185–192.

[27]

Lu, Y.; Yue, Y. Y.; Ding, Q. Q.; Mei, C. T.; Xu, X. W.; Wu, Q. L.; Xiao, H. N.; Han, J. Q. Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 2021, 13, 50281–50297.

[28]

Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel-and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

[29]

Wei, Y.; Xiang, L. J.; Ou, H. J.; Li, F.; Zhang, Y. Z.; Qian, Y. Y.; Hao, L. J.; Diao, J. J.; Zhang, M. L.; Zhu, P. H. et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv. Funct. Mater. 2020, 30, 2005135.

[30]

Huang, H. L.; Han, L.; Fu, X. B.; Wang, Y. L.; Yang, Z. L.; Pan, L. K.; Xu, M. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv. Electron. Mater. 2020, 6, 2000239.

[31]

Meng, Y.; Zhang, L. F.; Peng, M. J.; Shen, D. N.; Zhu, C. H.; Qian, S. Y.; Liu, J.; Cao, Y. F.; Yan, C. L.; Zhou, J. Q. et al. Developing thermoregulatory hydrogel electrolyte to overcome thermal runaway in zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2206653.

[32]

Zhang, H. X.; Niu, W. B.; Zhang, S. F. Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chem. Eng. J. 2020, 387, 124105.

[33]

Ji, G. C.; Hu, R. F.; Wang, Y. H.; Zheng, J. P. High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 2022, 46, 103858.

[34]

Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

[35]

Liu, Y. M.; Wong, T. H.; Huang, X. C.; Yiu, C. K.; Gao, Y. Y.; Zhao, L.; Zhou, J. K.; Park, W.; Zhao, Z.; Yao, K. M. et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 2022, 99, 107442.

[36]

Yu, J.; Wang, M.; Dang, C.; Zhang, C. Z.; Feng, X.; Chen, G. X.; Huang, Z. Y.; Qi, H. S.; Liu, H. C.; Kang, J. Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. J. Mater. Chem. C 2021, 9, 3635–3641.

[37]

Ying, B. B.; Chen, R. Z.; Zuo, R. Z.; Li, J. Y.; Liu, X. Y. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Funct. Mater. 2021, 31, 2104665.

[38]

Zhang, L.; Wang, S. H.; Wang, Z. M.; Huang, Z.; Sun, P. H.; Dong, F. H.; Liu, H.; Wang, D.; Xu, X. A sweat-pH-enabled strongly adhesive hydrogel for self-powered e-skin applications. Mater. Horiz. 2023, 10, 2271–2280.

[39]

Kim, J. N.; Lee, J.; Lee, H.; Oh, I. K. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy 2021, 82, 105705.

[40]

Cao, X. Y.; Ye, C.; Cao, L. T.; Shan, Y. C.; Ren, J.; Ling, S. J. Biomimetic spun silk ionotronic fibers for intelligent discrimination of motions and tactile stimuli. Adv. Mater. 2023, 35, 2300447.

[41]

Dai, C. C.; Wang, Y.; Shan, Y. C.; Ye, C.; Lv, Z. C.; Yang, S.; Cao, L. T.; Ren, J.; Yu, H. P.; Liu, S. X. et al. Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 2023, 10, 136–148.

[42]

Liu, Z. Y.; Wang, Y.; Ren, Y. Y.; Jin, G. Q.; Zhang, C. C.; Chen, W.; Yan, F. Poly (ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz. 2020, 7, 919–927.

[43]

Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human-machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

[44]

Mao, Y. C.; Zhang, N.; Tang, Y. J.; Wang, M.; Chao, M. J.; Liang, E. J. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 2017, 9, 14499–14505.

[45]

Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

[46]

Ficker, T. Electrification of human body by walking. J. Electrost. 2006, 64, 10–16.

[47]

Takiguchi, K.; Wada, T.; Toyama, S. Human body detection that uses electric field by walking. J. Adv. Mech. Des. Syst. Manuf. 2007, 1, 294–305.

[48]

Langkilde, F. W.; Svantesson, A. Identification of celluloses with Fourier-transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry. J. Pharm. Biomed. Anal. 1995, 13, 409–414.

[49]

Zhu, M. S.; Wang, X. J.; Tang, H. M.; Wang, J. W.; Hao, Q.; Liu, L. X.; Li, Y.; Zhang, K.; Schmidt, O. G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2020, 30, 1907218.

[50]

Wang, B. J.; Li, J. M.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Stable hydrogel electrolytes for flexible and submarine-use Zn-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 46005–46014.

[51]

Zhao, B. H.; Chen, Q. Y.; Da, G. H.; Yao, J. R.; Shao, Z. Z.; Chen, X. A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. J. Mater. Chem. C 2021, 9, 8955–8965.

[52]

Liu, Y.; Wang, C.; Xue, J. T.; Huang, G. H.; Zheng, S.; Zhao, K.; Huang, J.; Wang, Y. Q.; Zhang, Y.; Yin, T. L. et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv. Healthcare Mater. 2022, 11, 2200653.

[53]

Jiao, Q.; Cao, L. L.; Zhao, Z. J.; Zhang, H.; Li, J. J.; Wei, Y. P. Zwitterionic hydrogel with high transparency, ultrastretchability, andremarkablefreezingresistanceforwearablestrain sensors. Biomacromolecules 2021, 22, 1220–1230.

[54]

Wang, Q. H.; Pan, X. F.; Lin, C. M.; Ma, X. J.; Cao, S. L.; Ni, Y. H. Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chem. Eng. J. 2020, 396, 125341.

[55]

Wang, M. X.; Zhang, P. Y.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21, 359–365.

[56]

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967

[57]

Pan, S. X.; Xia, M.; Li, H. H.; Jiang, X. L.; He, P. X.; Sun, Z. G.; Zhang, Y. H. Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. J. Mater. Chem. C 2020, 8, 2827–2837

Nano Research
Pages 4462-4470
Cite this article:
Feng T, Ling D, Li C, et al. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Research, 2024, 17(5): 4462-4470. https://doi.org/10.1007/s12274-023-6365-8
Topics:

838

Views

54

Crossref

63

Web of Science

57

Scopus

0

CSCD

Altmetrics

Received: 18 October 2023
Revised: 15 November 2023
Accepted: 26 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return