Journal Home > Volume 16 , Issue 12

Preoperative localization of the tumor sites and intraoperative real-time monitoring are essential for precise surgery but are meanwhile challenging due to the lack of high-resolution, easy-to-operate, and fast visualization techniques. On the other hand, tumor recurrence and metastasis after surgery greatly reduce the survival rate of patients. Intervening tumor recurrence during surgery is a future direction of tumor treatment. Nanomaterials with external condition responsiveness (light, ultrasound, and magnetic field) can accurately assist intraoperative detection and surgical resection due to their functions such as tumor cell targeting, fluorescence imaging, and real time monitoring, providing a more accurate, shorter duration, and visualization method of surgical resection. Moreover, nanomaterials are versatile and can easily be tailored for application in different tumors. Locally filled or systemically circulating nanomaterials with slow drug release and residual tumor cell-targeting ability have promising applications in inhibiting tumor recurrence. Here, we review surgical navigation and postoperative recurrence interventional nanomaterials and their landscape in guiding tumor treatment. We summarize the classification and characteristics of these nanomaterials and discuss their application in the surgical navigation and recurrence inhibition of different tumors. We also provide an outlook on the challenges and future development of nanomaterials for visualized tumor surgical navigation and postoperative recurrence inhibition.


menu
Abstract
Full text
Outline
About this article

Nanomaterials for visualized tumor surgical navigation and postoperative recurrence inhibition

Show Author's information Fuming Liang1,2,§Qing You1,§Hongjiang Ye2,§Wenqiao Fu2Xiaopeng Ma3Jiahe Tan2Yinrui Ma2Chen Wang1Yanlian Yang1( )Zhaohui He2( )Ling Zhu1( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
The First Affiliated Hospital University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230000, China

§ Fuming Liang, Qing You, and Hongjiang Ye contributed equally to this work.

Abstract

Preoperative localization of the tumor sites and intraoperative real-time monitoring are essential for precise surgery but are meanwhile challenging due to the lack of high-resolution, easy-to-operate, and fast visualization techniques. On the other hand, tumor recurrence and metastasis after surgery greatly reduce the survival rate of patients. Intervening tumor recurrence during surgery is a future direction of tumor treatment. Nanomaterials with external condition responsiveness (light, ultrasound, and magnetic field) can accurately assist intraoperative detection and surgical resection due to their functions such as tumor cell targeting, fluorescence imaging, and real time monitoring, providing a more accurate, shorter duration, and visualization method of surgical resection. Moreover, nanomaterials are versatile and can easily be tailored for application in different tumors. Locally filled or systemically circulating nanomaterials with slow drug release and residual tumor cell-targeting ability have promising applications in inhibiting tumor recurrence. Here, we review surgical navigation and postoperative recurrence interventional nanomaterials and their landscape in guiding tumor treatment. We summarize the classification and characteristics of these nanomaterials and discuss their application in the surgical navigation and recurrence inhibition of different tumors. We also provide an outlook on the challenges and future development of nanomaterials for visualized tumor surgical navigation and postoperative recurrence inhibition.

Keywords: nanomaterials, surgical navigation, tumor recurrence inhibition, tumor resection

References(126)

[1]

Weller, M.; Van Den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J. C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186.

[2]

Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362.

[3]

Al-Hilli, Z.; Wilkerson, A. Breast surgery: Management of postoperative complications following operations for breast cancer. Surg. Clin. North Am. 2021, 101, 845–863.

[4]

Aziz, H.; Acher, A. W.; Krishna, S. G.; Cloyd, J. M.; Pawlik, T. M. Comparison of society guidelines for the management and surveillance of pancreatic cysts: A review. JAMA Surg. 2022, 157, 723–730.

[5]

Zaffino, P.; Moccia, S.; De Momi, E.; Spadea, M. F. A review on advances in intra-operative imaging for surgery and therapy: Imagining the operating room of the future. Ann. Biomed. Eng. 2020, 48, 2171–2191.

[6]

Moiyadi, A.; Shetty, P. Navigable intraoperative ultrasound and fluorescence-guided resections are complementary in resection control of malignant gliomas: One size does not fit all. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2014, 75, 434–441.

[7]

Yoo, T. K.; Kang, Y. J.; Jeong, J.; Song, J. Y.; Kang, S. H.; Lee, H. Y.; Kim, E. T.; Yi, O.; Lee, H. B.; Choi, S. et al. A randomized controlled trial for doing vs. omitting intraoperative frozen section biopsy for resection margin status in selected patients undergoing breast-conserving surgery (OFF-MAP trial). J. Breast. Cancer 2021, 24, 569–577.

[8]

Cruz, C.; Afonso, M.; Oliveiros, B.; Pêgo, A. Recurrence and risk factors for relapse in patients with non-small cell lung cancer treated by surgery with curative intent. Oncology 2017, 92, 347–352.

[9]

Wu, Y. M.; Shi, X. C.; Li, J. P.; Wu, G. S. Prognosis of surgical treatment after ipsilateral breast tumor recurrence. J. Surg. Res. 2021, 258, 23–37.

[10]

Algar, W. R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K. D.; Darwish, G. H.; Peveler, W. J.; Xiao, Z. J.; Tsai, H. Y.; Gupta, R. et al. Photoluminescent nanoparticles for chemical and biological analysis and imaging. Chem. Rev. 2021, 121, 9243–9358.

[11]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 2021, 20, 101–124.

[12]

Bogart, L. K.; Pourroy, G.; Murphy, C. J.; Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014, 8, 3107–3122.

[13]

Duan, G. X.; Zhang, J. Y.; Wei, Z. X.; Wang, X. M.; Zeng, J. F.; Wu, S. W.; Hu, C. H.; Wen, L. Intraoperative diagnosis of early lymphatic metastasis using neodymium-based rare-earth NIR-II fluorescence nanoprobe. Nanoscale Adv. 2023, 5, 4240–4249.

[14]

Xu, Y. Q.; Cui, M. Y.; Zhang, W. C.; Liu, T. G.; Ren, X. Y.; Gu, Y. Q.; Ran, C. Z.; Yang, J.; Wang P. A sulfatase-activatable AIEgen nanoprobe for inhalation imaging-guided surgical excision of lung cancer. Chem. Eng. J. 2022, 428, 132514.

[15]

Colby, A. H.; Berry, S. M.; Moran, A. M.; Pasion, K. A.; Liu, R.; Colson, Y. L.; Ruiz-Opazo, N.; Grinstaff, M. W.; Herrera, V. L. M. Highly specific and sensitive fluorescent nanoprobes for image-guided resection of sub-millimeter peritoneal tumors. ACS Nano 2017, 11, 1466–1477.

[16]

Wang, Z. J.; Zhang, M.; Chi, S. Y.; Zhu, M. T.; Wang, C. X.; Liu, Z. H. Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of Glioma. Adv Healthc. Mater. 2022, 11, 2200521.

[17]

Qian, Q. H.; Song, J.; Chen, C.; Pu, Q.; Liu, X. C.; Wang, H. L. Recent advances in hydrogels for preventing tumor recurrence. Biomater. Sci. 2023, 11, 2678–2692.

[18]

Ditto, A.; Ferla, S.; Martinelli, F.; Bogani, G.; Maggiore, U. L. R.; Raspagliesi, F. Real-time fluorescent ICG and 99m-Tc nanocolloid tracer navigation in bilateral sentinel lymph node mapping of vulvar cancer. J. Minim. Invasive. Gynecol. 2023, 30, 780–781.

[19]

Nicoli, F.; Saleh, D. B.; Baljer, B.; Chan, C. D.; Beckingsale, T.; Ghosh, K. M.; Ragbir, M.; Rankin, K. S. Intraoperative near-infrared fluorescence (NIR) imaging with indocyanine green (ICG) can identify bone and soft tissue sarcomas which may provide guidance for oncological resection. Ann. Surg. 2021, 273, e63–e68.

[20]

Ushijima, H.; Kawamura, J.; Ueda, K.; Yane, Y.; Yoshioka, Y.; Daito, K.; Tokoro, T.; Hida, J. I.; Okuno, K. Visualization of lymphatic flow in laparoscopic colon cancer surgery using indocyanine green fluorescence imaging. Sci. Rep. 2020, 10, 14274.

[21]

Hu, Z. H.; Fang, C.; Li, B.; Zhang, Z. Y.; Cao, C. G.; Cai, M. S.; Su, S.; Sun, X. W.; Shi, X. J.; Li, C. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 2020, 4, 259–271.

[22]

Xu, H. Y.; Han, Y. H.; Zhao, G.; Zhang, L.; Zhao, Z. R.; Wang, Z.; Zhao, L.; Hua, L.; Naveena, K.; Lu, J. et al. Hypoxia-responsive lipid-polymer nanoparticle-combined imaging-guided surgery and multitherapy strategies for glioma. ACS Appl. Mater. Interfaces 2020, 12, 52319–52328.

[23]

Turley, A. T.; Saha, P. K.; Danos, A.; Bismillah, A. N.; Monkman, A. P.; Yufit, D. S.; Curchod, B. F. E.; Etherington, M. K.; McGonigal, P. R. Extended conjugation attenuates the quenching of aggregation-induced emitters by photocyclization pathways. Angew. Chem., Int. Ed. 2022, 61, e202202193.

[24]

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

[25]

Xu, R. T.; Jiao, D.; Long, Q.; Li, X. L.; Shan, K.; Kong, X. L.; Ou, H. L.; Ding, D.; Tang, Q. Y. Highly bright aggregation-induced emission nanodots for precise photoacoustic/NIR-II fluorescence imaging-guided resection of neuroendocrine neoplasms and sentinel lymph nodes. Biomaterials 2022, 289, 121780.

[26]

Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

[27]

Xu, Z.; Huang, H. B.; Xiong, X.; Wei, X. Q.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A near-infrared light-responsive extracellular vesicle as a “Trojan horse” for tumor deep penetration and imaging-guided therapy. Biomaterials 2021, 269, 120647.

[28]

Liu, X. Y.; Braun, G. B.; Zhong, H. Z.; Hall, D. J.; Han, W. L.; Qin, M. D.; Zhao, C. Z.; Wang, M.; She, Z. G.; Cao, C. B. et al. Tumor-targeted multimodal optical imaging with versatile cadmium-free quantum dots. Adv. Funct. Mater. 2016, 26, 267–276.

[29]

Juengpanich, S.; Li, S. J.; Yang, T. R.; Xie, T. N.; Chen, J. D.; Shan, Y. K.; Lee, J.; Lu, Z. Y.; Chen, T. N.; Zhang, B. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun. 2023, 14, 5699.

[30]

Li, S. H.; Wei, X. D.; Li, S. S.; Zhu, C. M.; Wu, C. H. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment. Int. J. Nanomed. 2020, 15, 9431–9445.

[31]

Chen, G. Y.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163–3168.

[32]

Zhang, Q. Z.; O'Brien, S.; Grimm, J. Biomedical applications of lanthanide nanomaterials, for imaging, sensing and therapy. Nanotheranostics 2022, 6, 184–194.

[33]

Xiao, Y. D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z. S.; Zhou, S. K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326.

[34]

Kaittanis, C.; Shaffer, T. M.; Bolaender, A.; Appelbaum, Z.; Appelbaum, J.; Chiosis, G.; Grimm, J. Multifunctional MRI/PET nanobeacons derived from the in situ self-assembly of translational polymers and clinical cargo through coalescent intermolecular forces. Nano Lett. 2015, 15, 8032–8043.

[35]

Shiozawa, M.; Kobayashi, S.; Sato, Y.; Maeshima, H.; Hozumi, Y.; Lefor, A. T.; Kurihara, K.; Sata, N.; Yasuda, Y. Magnetic resonance lymphography of sentinel lymph nodes in patients with breast cancer using superparamagnetic iron oxide: A feasibility study. Breast Cancer 2014, 21, 394–401.

[36]

Fu, C. P.; Duan, X. H.; Cao, M. H.; Jiang, S. Q.; Ban, X. H.; Guo, N.; Zhang, F.; Mao, J. J.; Huyan, T.; Shen, J. et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv. Healthc. Mater. 2019, 8, e1900047.

[37]

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

[38]

Thawani, J. P.; Amirshaghaghi, A.; Yan, L. S.; Stein, J. M.; Liu, J.; Tsourkas, A. Photoacoustic-guided surgery with indocyanine green-coated superparamagnetic iron oxide nanoparticle clusters. Small 2017, 13, 1701300.

[39]
Xia, J. Z.; Feng, G.; Xia, X. R.; Hao, L.; Wang, Z. G. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer. Int. J. Nanomed. 2017 , 12, 1803–1813.
[40]

Renaudin, N.; Pezet, S.; Ialy-Radio, N.; Demene, C.; Tanter, M. Backscattering amplitude in ultrasound localization microscopy. Sci. Rep. 2023, 13, 11477.

[41]

Fang, Y.; Lin, W.; Zhou, Y. W.; Wang, W. W.; Liu, X. P. Evaluation of tumor resection effect of color doppler ultrasound positioning guided breast-conserving surgery using nano-contrast agent. Cell Mol. Biol. (Noisy-le-grand) 2022, 68, 365–373.

[42]

Wang, J. Q.; Xie, L. T.; Shi, Y.; Ao, L. J.; Cai, F. Y.; Yan, F. Early detection and reversal of cell apoptosis induced by focused ultrasound-mediated blood-brain barrier opening. ACS Nano 2021, 15, 14509–14521.

[43]

Yin, H.; Jin, Z. Y.; Duan, W. J.; Han, B.; Han, L. M.; Li, C. Emergence of responsive surface-enhanced Raman scattering probes for imaging tumor-associated metabolites. Adv. Healthc. Mater. 2022, 11, 2200030.

[44]

Han, L. M.; Duan, W. J.; Li, X. W.; Wang, C.; Jin, Z. Y.; Zhai, Y. T.; Cao, C.; Chen, L.; Xu, W. J.; Liu, Y. et al. Surface-enhanced resonance Raman scattering-guided brain tumor surgery showing prognostic benefit in rat models. ACS Appl. Mater. Interfaces 2019, 11, 15241–15250.

[45]

Karabeber, H.; Huang, R. M.; Iacono, P.; Samii, J. M.; Pitter, K.; Holland, E. C.; Kircher, M. F. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014, 8, 9755–9766.

[46]

Malone, J. X-rays for medical imaging: Radiation protection, governance and ethics over 125years. Phys. Med. 2020, 79, 47–64.

[47]

Seeram, E. Computed tomography: A technical review. Radiol. Technol. 2018, 89, 279CT–302CT.

[48]

Wang, X. Y.; Wang, J. J.; Pan, J. B.; Zhao, F. S.; Kan, D.; Cheng, R.; Zhang, X. N.; Sun, S. K. Rhenium sulfide nanoparticles as a biosafe spectral CT contrast agent for gastrointestinal tract imaging and tumor theranostics in vivo. ACS Appl. Mater. Interfaces 2019, 11, 33650–33658.

[49]

Bowles, H.; Sánchez, N.; Tapias, A.; Paredes, P.; Campos, F.; Bluemel, C.; Olmos, R. A. V.; Vidal-Sicart, S. Radioguided surgery and the GOSTT concept: From pre-operative image and intraoperative navigation to image-assisted excision. Rev. Esp. Med. Nucl. Imagen. Mol. 2017, 36, 175–184.

[50]

Li, T. Z.; Li, J. F.; Chen, Z.; Zhang, S. H.; Li, S. L.; Wageh, S.; Al-Hartomy, O. A.; Al-Sehemi, A. G.; Xie, Z. J.; Kankala, R. K. et al. Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J. Control. Release 2022, 352, 338–370.

[51]

Natale, G.; Stouthandel, M. E. J.; Van Hoof, T.; Bocci, G. The lymphatic system in breast cancer: Anatomical and molecular approaches. Medicina (Kaunas) 2021, 57, 1272.

[52]

Yao, C. Y.; Wu, S. L.; Kong, J.; Sun, Y. W.; Bai, Y. N.; Zhu, R. H.; Li, Z. X.; Sun, W. B.; Zheng, L. M. Angiogenesis in hepatocellular carcinoma: Mechanisms and anti-angiogenic therapies. Cancer Biol. Med. 2023, 20, 25–43.

[53]

Kumbhar, P.; Manjappa, A.; Shah, R.; Jha, N. K.; Singh, S. K.; Dua, K.; Disouza, J.; Patravale, V. Inhalation delivery of repurposed drugs for lung cancer: Approaches, benefits and challenges. J. Control. Release 2022, 341, 1–15.

[54]

Goéré, D.; Glehen, O.; Quenet, F.; Guilloit, J. M.; Bereder, J. M.; Lorimier, G.; Thibaudeau, E.; Ghouti, L.; Pinto, A.; Tuech, J. J. et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): A randomised, phase 3 study. Lancet Oncol. 2020, 21, 1147–1154.

[55]

Carpino, G.; Cardinale, V.; Di Giamberardino, A.; Overi, D.; Donsante, S.; Colasanti, T.; Amato, G.; Mennini, G.; Franchitto, M.; Conti, F. et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. J. Hepatol. 2021, 75, 1377–1386.

[56]

Huang, C. B.; Li, H.; Xu, Y.; Xu, C.; Sun, H. Z.; Li, Z. X.; Ge, Y.; Wang, H. W.; Zhao, T. S.; Gao, S. et al. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal. Transduct. Target. Ther. 2023, 8, 271.

[57]

Ljubimova, J. Y.; Sun, T.; Mashouf, L.; Ljubimov, A. V.; Israel, L. L.; Ljubimov, V. A.; Falahatian, V.; Holler, E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv. Drug Deliv. Rev. 2017, 113, 177–200.

[58]

Song, X. W.; Qian, H. S.; Yu, Y. Q. Nanoparticles mediated the diagnosis and therapy of glioblastoma: Bypass or cross the blood-brain barrier. Small 2023, 19, 2302613.

[59]

Ni, D. L.; Zhang, J. W.; Bu, W. B.; Xing, H. Y.; Han, F.; Xiao, Q. F.; Yao, Z. W.; Chen, F.; He, Q. J.; Liu, J. N. et al. Dual-targeting upconversion nanoprobes across the blood-brain barrier for magnetic resonance/fluorescence imaging of intracranial glioblastoma. ACS Nano 2014, 8, 1231–1242.

[60]

Lee, C.; Hwang, H. S.; Lee, S.; Kim, B.; Kim, J. O.; Oh, K. T.; Lee, E. S.; Choi, H. G.; Youn, Y. S. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv. Mater. 2017, 29, 1605563.

[61]

Waks, A. G.; Winer, E. P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300.

[62]

Yang, R. Q.; Chen, M.; Zhang, Q.; Gao, Y. Y.; Lou, K. L.; Lin, T. T.; Huang, W. H.; Zeng, Y. Z.; Zhang, Y. Q.; Dang, Y. Y. et al. Development and preclinical evaluation of a near-infrared fluorescence probe based on tailored Hepatitis B core particles for imaging-guided surgery in breast cancer. Int. J. Nanomed. 2022, 17, 1343–1360.

[63]

Giuliano, A. E.; Ballman, K. V.; McCall, L.; Beitsch, P. D.; Brennan, M. B.; Kelemen, P. R.; Ollila, D. W.; Hansen, N. M.; Whitworth, P. W.; Blumencranz, P. W. et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: The ACOSOG Z0011 (alliance) randomized clinical trial. JAMA 2017, 318, 918–926.

[64]

Dai, R. Y.; Peng, X. R.; Lin, B.; Xu, D. Y.; Lv, R. C. NIR II luminescence imaging for sentinel lymph node and enhanced chemo-/photothermal therapy for breast cancer. Bioconjugate Chem. 2021, 32, 2117–2127.

[65]

Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314.

[66]

Zhang, X. J.; Zhou, C. S.; Wu, F. H.; Gao, C.; Liu, Q. Q.; Lv, P.; Li, M.; Huang, L. Y.; Wu, T.; Li, W. G. Bio-engineered nano-vesicles for IR820 delivery: A therapy platform for cancer by surgery and photothermal therapy. Nanoscale 2022, 14, 2780–2792.

[67]
Tsai, C. N.; Yu, S. C.; Lee, C. W.; Pang, J. H. S.; Wu, C. H.; Lin, S. E.; Chung, Y. H.; Tsai, C. L.; Hsieh, S. Y.; Yu, M. C. SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo. Oncogene 2020 , 39, 4695–4710.
DOI
[68]

Zou, R. H.; Lin, Q. G.; Huang, W.; Li, X. L.; Cao, Y.; Zhang, J.; Zhou, J. H.; Li, A. H.; Beretta, L.; Qian, C. N. Quantitative contrast-enhanced ultrasonic imaging reflects microvascularization in hepatocellular carcinoma and prognosis after resection. Ultrasound Med. Biol. 2015, 41, 2621–2630.

[69]

Zhang, Z. Y.; Fang, C.; Zhang, Y.; Su, S.; Li, B.; Liu, G.; Hu, Z. H.; Tian, J. NIR-II nano fluorescence image guided hepatic carcinoma resection on cirrhotic patient. Photodiagnosis Photodyn. Ther. 2022, 40, 103098.

[70]

Nasim, F.; Sabath, B. F.; Eapen, G. A. Lung Cancer. Med. Clin. North Am. 2019, 103, 463–473.

[71]

Jin, Q. T.; Zhu, W. J.; Zhu, J. F.; Zhu, J. J.; Shen, J. J.; Liu, Z.; Yang, Y.; Chen, Q. Nanoparticle-mediated delivery of inhaled immunotherapeutics for treating lung metastasis. Adv. Mater. 2021, 33, 2007557.

[72]
Jin, M.; Liu, B. H.; Zhang, Z.; Mu, Y. L.; Ma, L.; Yao, H.; Wang, D. A. Catechin-functionalized cationic lipopolymer based multicomponent nanomicelles for lung-targeting delivery. Adv. Mater., in press, https://doi.org/10.1002/adma.202302985.
DOI
[73]

Vaes, N.; Idris, M.; Boesmans, W.; Alves, M. M.; Melotte, V. Nerves in gastrointestinal cancer: From mechanism to modulations. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 768–784.

[74]

Li, T. W.; Cao, K. L.; Yang, X. H.; Liu, Y. Y.; Wang, X. Y.; Wu, F.; Chen, G. C.; Wang, Q. B. An oral ratiometric NIR-II fluorescent probe for reliable monitoring of gastrointestinal diseases in vivo. Biomaterials 2023, 293, 121956.

[75]

Chen, Z. W.; Kang, F. P.; Xie, C. K.; Liao, C. Y.; Li, G.; Wu, Y. D.; Lin, H. Y.; Zhu, S. C.; Hu, J. F.; Lin, C. F. et al. A novel trojan horse nanotherapy strategy targeting the cPKM-STMN1/TGFB1 axis for effective treatment of intrahepatic cholangiocarcinoma. Adv. Sci. 2023, 10, 2303814.

[76]

Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

[77]

Dane, E. L.; Belessiotis-Richards, A.; Backlund, C.; Wang, J. N.; Hidaka, K.; Milling, L. E.; Bhagchandani, S.; Melo, M. B.; Wu, S. W.; Li, N. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022, 21, 710–720.

[78]

Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838.

[79]

Pitsilos, C.; Givissis, P.; Papadopoulos, P.; Chalidis, B. Treatment of recurrent giant cell tumor of bones: A systematic review. Cancers (Basel) 2023, 15, 3287.

[80]

Swetha, K. L.; Roy, A. Tumor heterogeneity and nanoparticle-mediated tumor targeting: The importance of delivery system personalization. Drug Deliv. Transl. Res. 2018, 8, 1508–1526.

[81]

Yang, S. T.; Liu, Y.; Wang, Y. W.; Cao, A. N. Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small 2013, 9, 1635–1653.

[82]

Cao, J. Y.; Gao, M. K.; Wang, J.; Liu, Y.; Zhang, X.; Ping, Y.; Liu, J.; Chen, G.; Xu, D. H.; Huang, X. D. et al. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front. Nutr. 2023, 10, 1109204.

[83]

Chen, C.; Jing, W. Q.; Chen, Y.; Wang, G. Y.; Abdalla, M.; Gao, L.; Han, M. S.; Shi, C. D.; Li, A. N.; Sun, P. et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy. Sci. Transl. Med. 2022, 14, eabn1128.

[84]

Bunse, L.; Pusch, S.; Bunse, T.; Sahm, F.; Sanghvi, K.; Friedrich, M.; Alansary, D.; Sonner, J. K.; Green, E.; Deumelandt, K. et al. Suppression of antitumor T cell immunity by the oncometabolite ( R)-2-hydroxyglutarate. Nat. Med. 2018, 24, 1192–1203.

[85]

Zhang, J.; Chen, C.; Li, A. N.; Jing, W. Q.; Sun, P.; Huang, X. Y.; Liu, Y. C.; Zhang, S. C.; Du, W.; Zhang, R. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548.

[86]
Li, C. Y.; Wan, Y. L.; Zhang, Y. F.; Fu, L. H.; Blum, N. T.; Cui, R.; Wu, B. D.; Zheng, R.; Lin, J.; Li, Z. M. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) glioma. Adv. Mater. 2022 , 34, 2103980.
DOI
[87]

Chandrasekharan, P.; Tay, Z. W.; Hensley, D.; Zhou, X. Y.; Fung, B. K.; Colson, C.; Lu, Y.; Fellows, B. D.; Huynh, Q.; Saayujya, C. et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965–2981.

[88]

Kang, T.; Cha, G. D.; Park, O. K.; Cho, H. R.; Kim, M.; Lee, J.; Kim, D.; Lee, B.; Chu, J. Y.; Koo, S. et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano 2023, 17, 5435–5447.

[89]

Kimiz-Gebologlu, I.; Oncel, S. S. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J. Control. Release 2022, 347, 533–543.

[90]

Zhang, Y. Y.; Tian, S. D.; Huang, L. P.; Li, Y. N.; Lu, Y.; Li, H. Y.; Chen, G. P.; Meng, F. L.; Liu, G. L.; Yang, X. L. et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat. Commun. 2022, 13, 4553.

[91]

Tang, J. Y.; Xiang, Z. Y.; Bernards, M. T.; Chen, S. F. Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater. 2020, 116, 84–104.

[92]

Fang, Y.; Yang, J. P.; Zhang, M. L.; Song, J. H.; Lin, R. L. A longitudinal study of stress in new nurses in their first year of employment. Int. J. Clin. Pract. 2022, 2022, 6932850.

[93]

Bu, L. L.; Yan, J. J.; Wang, Z. J.; Ruan, H. T.; Chen, Q.; Gunadhi, V.; Bell, R. B.; Gu, Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019, 219, 119182.

[94]

Mathios, D.; Kim, J. E.; Mangraviti, A.; Phallen, J.; Park, C. K.; Jackson, C. M.; Garzon-Muvdi, T.; Kim, E.; Theodros, D.; Polanczyk, M. et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci. Transl. Med. 2016, 8, 370ra180.

[95]

De Bonis, P.; Anile, C.; Pompucci, A.; Fiorentino, A.; Balducci, M.; Chiesa, S.; Maira, G.; Mangiola, A. Safety and efficacy of Gliadel wafers for newly diagnosed and recurrent glioblastoma. Acta Neurochir. (Wien) 2012, 154, 1371–1378.

[96]

Ong, B. Y. S.; Ranganath, S. H.; Lee, L. Y.; Lu, F.; Lee, H. S.; Sahinidis, N. V.; Wang, C. H. Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials 2009, 30, 3189–3196.

[97]

Klode, J.; Klötgen, K.; Körber, A.; Schadendorf, D.; Dissemond, J. Polidocanol foam sclerotherapy is a new and effective treatment for post-operative lymphorrhea and lymphocele. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 904–909.

[98]

Liu, R.; Wolinsky, J. B.; Walpole, J.; Southard, E.; Chirieac, L. R.; Grinstaff, M. W.; Colson, Y. L. Prevention of local tumor recurrence following surgery using low-dose chemotherapeutic polymer films. Ann. Surg. Oncol. 2010, 17, 1203–1213.

[99]

Jiang, W.; Wei, L. L.; Chen, B.; Luo, X. Y.; Xu, P. P.; Cai, J. F.; Hu, Y. Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy. J. Nanobiotechnol. 2022, 20, 129.

[100]

Zhang, Z. Y.; Liu, S.; Qi, Y. X.; Zhou, D. F.; Xie, Z. G.; Jing, X. B.; Chen, X. S.; Huang, Y. B. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J. Control. Release 2016, 235, 125–133.

[101]

Chen, R. M.; Zhao, C.; Chen, Z. P.; Shi, X. Y.; Zhu, H. X.; Bu, Q.; Wang, L.; Wang, C. F.; He, H. A bionic cellulose nanofiber-based nanocage wound dressing for NIR-triggered multiple synergistic therapy of tumors and infected wounds. Biomaterials 2022, 281, 121330.

[102]

Liu, Z.; Luo, X.; Mo, Y. X.; Zhao, P. K.; Wang, H. X.; Fang, Y. Q.; Xu, Y. T. Enzyme-enhanced codelivery of doxorubicin and Bcl-2 inhibitor by electrospun nanofibers for synergistic inhibition of prostate cancer recurrence. Pharmaceuticals (Basel) 2022, 15, 1244.

[103]
You, Q.; Liang, F. M.; Wu, G. G.; Cao, F. F.; Liu, J. Y.; He, Z. H.; Wang, C.; Zhu, L.; Chen, X. Y.; Yang, Y. L. The landscape of biomimetic nanovesicles in brain diseases. Adv. Mater., in press, https://doi.org/10.1002/adma.202306583.
DOI
[104]

Peng, Z. H.; Zhang, X. C.; Yuan, L.; Li, T.; Chen, Y. J.; Tian, H.; Ma, D. D.; Deng, J.; Qi, X. W.; Yin, X T. Integrated endotoxin-adsorption and antibacterial properties of platelet-membrane-coated copper silicate hollow microspheres for wound healing. J. Nanobiotechnol. 2021, 19, 383.

[105]

Han, H. J.; Bártolo, R.; Li, J. C.; Shahbazi, M. A.; Santos, H. A. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur. J. Pharm. Biopharm. 2022, 172, 1–15.

[106]

Liu, Y. F.; Qi, Y.; Chen, C.; Jin, Y. C.; Du, S.; Qiao, J. N.; Yao, J. Platelet-mimetic nano-sensor for combating postoperative recurrence and wound infection of triple-negative breast cancer. J. Control. Release 2023, 362, 396–408.

[107]

Li, B. Z.; Zhang, X. P.; Wu, Z. L.; Chu, T. J.; Yang, Z. L.; Xu, S.; Wu, S. Y.; Qie, Y. K.; Lu, Z. F.; Qi, F. L. et al. Reducing postoperative recurrence of early-stage hepatocellular carcinoma by a wound-targeted nanodrug. Adv. Sci. (Weinh.) 2022, 9, 2200477.

[108]

Wang, J.; Tang, W.; Yang, M.; Yin, Y.; Li, H.; Hu, F. F.; Tang, L.; Ma, X. Y.; Zhang, Y.; Wang, Y. Z. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021, 273, 120784.

[109]

Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692–700.

[110]

Zhou, C. Y.; Wang, Z. Z.; Jiang, B. H.; Di, J. B.; Su, X. Q. Monitoring Pre- and post-operative immune alterations in patients with locoregional colorectal cancer who underwent laparoscopy by single-cell mass cytometry. Front. Immunol. 2022, 13, 807539.

[111]

Zhong, X. W.; Li, C. Y.; Zhao, G. Z.; Li, M. M.; Chen, S. N.; Cao, Y.; Wang, Q.; Sun, J. C.; Zhu, S. Y.; Chang, S. F. Photoacoustic mediated multifunctional tumor antigen trapping nanoparticles inhibit the recurrence and metastasis of ovarian cancer by enhancing tumor immunogenicity. J. Nanobiotechnol. 2022, 20, 468.

[112]

Domingos-Pereira, S.; Roh, V.; Hiou-Feige, A.; Galliverti, G.; Simon, C.; Tolstonog, G. V.; Nardelli-Haefliger, D. Vaccination with a nanoparticle E7 vaccine can prevent tumor recurrence following surgery in a human papillomavirus head and neck cancer model. Oncoimmunology 2021, 10, 1912473.

[113]

Dai, J.; Cheng, Y.; Wu, J.; Wang, Q.; Wang, W. W.; Yang, J. L.; Zhao, Z. J.; Lou, X. D.; Xia, F.; Wang, S. X. et al. Modular peptide probe for pre/intra/postoperative therapeutic to reduce recurrence in ovarian cancer. ACS Nano 2020, 14, 14698–14714.

[114]

Zhou, T. J.; Liang, X. L.; Wang, P. F.; Hu, Y. Y.; Qi, Y. F.; Jin, Y. S.; Du, Y.; Fang, C. H.; Tian, J. A hepatocellular carcinoma targeting nanostrategy with hypoxia-ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence. ACS Nano 2020, 14, 12679–12696.

[115]

Thao, L. Q.; Lee, C.; Kim, B.; Lee, S.; Kim, T. H.; Kim, J. O.; Lee, E. S.; Oh, K. T.; Choi, H. G.; Yoo, S. D. et al. Doxorubicin and paclitaxel co-bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinoma. Colloids Surf. B Biointerfaces 2017, 152, 183–191.

[116]

Zhang, X. P.; Chen, X. J.; Li, B. Z.; Xu, S.; Wu, Z. L.; Hu, M. G.; Zhao, Z. M.; Zhao, G. D.; Wang, C. R.; Hong, W. et al. Active targeted Janus nanoparticles enable anti-angiogenic drug combining chemotherapy agent to prevent postoperative hepatocellular carcinoma recurrence. Biomaterials 2022, 281, 121362.

[117]

Ling, M. J.; Sun, R.; Li, G.; Syeda, M. Z.; Ma, W.; Mai, Z. Y.; Shao, L. Q.; Tang, L. G.; Yu, Z. Q. NIR-II emissive dye based polymer nanoparticle targeting EGFR for oral cancer theranostics. Nano Res. 2022, 15, 6288–6296.

[118]

Nichols, J. W.; Bae, Y. H. EPR: Evidence and fallacy. J. Control. Release 2014, 190, 451–464.

[119]

Song, C.; Ouyang, Z. J.; Guo, H. H.; Qu, J.; Gao, Y.; Xia, J. D.; Shen, M. W.; Shi, X. Y. Core–shell tecto dendrimers enable enhanced tumor MR imaging through an amplified EPR effect. Biomacromolecules 2021, 22, 2181–2188.

[120]

An, R. B.; Liu, L. J.; Wei, S. X.; Huang, Z.; Qiu, L.; Lin, J. G.; Liu, H.; Ye, D. J. Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics. ACS Nano 2022, 16, 20607–20621.

[121]
You, Q.; Wang, F.; Du, R.; Pi, J. N.; Wang, H. Y.; Huo, Y.; Liu, J. Y.; Wang, C.; Yu, J.; Yang, Y. L. et al. m6A reader YTHDF1-targeting engineered small extracellular vesicles for gastric cancer therapy via epigenetic and immune regulation. Adv. Mater. 2023 , 35, 2204910.
DOI
[122]

Hu, H.; Huang, P.; Weiss, O. J.; Yan, X. F.; Yue, X. Y.; Zhang, M. G.; Tang, Y. X.; Nie, L. M.; Ma, Y.; Niu, G. et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 2014, 35, 9868–9876.

[123]

Bhatia, S. N.; Chen, X. Y.; Dobrovolskaia, M. A.; Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer 2022, 22, 550–556.

[124]

Moon, B.; Chang, S. Exosome as a delivery vehicle for cancer therapy. Cells 2022, 11, 316.

[125]

Wang, H. R.; Li, Q. Y.; Alam, P.; Bai, H. T.; Bhalla, V.; Bryce, M. R.; Cao, M. Y.; Chen, C.; Chen, S. J.; Chen, X. R. et al. Aggregation-induced emission (AIE), life and health. ACS Nano 2023, 17, 14347–14405.

[126]

Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2023
Revised: 23 November 2023
Accepted: 23 November 2023
Published: 14 December 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 31971295, 12374406, and 27121002), Strategic Priority Research Program of Chinese Academy of Science (No. XDB36000000), and Natural Science Foundation Project of Chongqing Science and Technology Commission (No. CSTB2023NSCQ-MSX0112).

Return