Journal Home > Volume 17 , Issue 5

The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy. In this work, the second near-infrared (NIR-II) fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration. The delayed cell therapy (DCT) group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy (ICT) group. Both Keller–Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT. Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging

Show Author's information Yuzhou Chen1,2,§Mo Chen1,3,§Chengxuan Yu1,§Huizhu Li1Liman Sai4Nguyen T. K. Thanh5,6Yueming Wang7Yan Wo7Jian Zhang1Xing Yang8Evgenii L. Guryev9Andrei V. Zvyagin9Hao De10Min Tang11Shiyi Chen1Yunxia Li1( )Yuefeng Hao8( )Sijia Feng1( )Jun Chen1( )
Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
Department of Physics, Shanghai Normal University, Shanghai 200234, China
Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
UCL Healthcare Biomagnetic and Nanomaterials Laboratories, London W1S 4BS, UK
Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, China
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Institute of Natural Sciences, School of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

§ Yuzhou Chen, Mo Chen, and Chengxuan Yu contributed equally to this work.

Abstract

The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy. In this work, the second near-infrared (NIR-II) fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration. The delayed cell therapy (DCT) group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy (ICT) group. Both Keller–Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT. Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies.

Keywords: cell therapy, in vivo imaging, macrophage, NIR-II, delayed therapy, tendon healing

References(36)

[1]

Dreymueller, D.; Denecke, B.; Ludwig, A.; Jahnen-Dechent, W. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing. Wound Repair Regen. 2013, 21, 44–54.

[2]

Duan, J.; Liu, X. S.; Wang, H. L.; Guo, S. W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online 2018, 37, 254–268.

[3]

Gulotta, L. V.; Kovacevic, D.; Ehteshami, J. R.; Dagher, E.; Packer, J. D.; Rodeo, S. A. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am. J. Sports. Med. 2009, 37, 2126–2133.

[4]

Murray, P. J.; Allen, J. E.; Biswas, S. K.; Fisher, E. A.; Gilroy, D. W.; Goerdt, S.; Gordon, S.; Hamilton, J. A.; Ivashkiv, L. B.; Lawrence, T. et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20.

[5]

Arnold, L.; Henry, A.; Poron, F.; Baba-Amer, Y.; van Rooijen, N.; Plonquet, A.; Gherardi, R. K.; Chazaud, B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 2007, 204, 1057–1069.

[6]

Lucas, T.; Waisman, A.; Ranjan, R.; Roes, J.; Krieg, T.; Müller, W.; Roers, A.; Eming, S. A. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 2010, 184, 3964–3977.

[7]

Contreras-Muñoz, P.; Torrella, J. R.; Venegas, V.; Serres, X.; Vidal, L.; Vila, I.; Lahtinen, I.; Viscor, G.; Martínez-Ibáñez, V.; Peiró, J. L. et al. Muscle precursor cells enhance functional muscle recovery and show synergistic effects with postinjury treadmill exercise in a muscle injury model in rats. Am. J. Sports Med. 2021, 49, 1073–1085.

[8]

Chamberlain, C. S.; Clements, A. E. B.; Kink, J. A.; Choi, U.; Baer, G. S.; Halanski, M. A.; Hematti, P.; Vanderby, R. Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells. 2019, 37, 652–662.

[9]

Jayme, T. S.; Leung, G.; Wang, A.; Workentine, M. L.; Rajeev, S.; Shute, A.; Callejas, B. E.; Mancini, N.; Beck, P. L.; Panaccione, R. et al. Human interleukin-4-treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model. Sci. Adv. 2020, 6, eaba4376.

[10]

Jetten, N.; Roumans, N.; Gijbels, M. J.; Romano, A.; Post, M. J.; de Winther, M. P. J.; van der Hulst, R. R. W. J.; Xanthoulea, S. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One. 2014, 9, e102994.

[11]

D'Alessio, F. R.; Craig, J. M.; Singer, B. D.; Files, D. C.; Mock, J. R.; Garibaldi, B. T.; Fallica, J.; Tripathi, A.; Mandke, P.; Gans, J. H. et al. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L733–L746.

[12]

Francos-Quijorna, I.; Amo-Aparicio, J.; Martinez-Muriana, A.; López-Vales, R. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia. 2016, 64, 2079–2092.

[13]
Hunter, M. M.; Wang, A.; Parhar, K. S.; Johnston, M. J. G.; Van Rooijen, N.; Beck, P. L.; McKay, D. M. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 2010 , 138, 1395–1405.
[14]

Jetten, N.; Donners, M. M. P. C.; Wagenaar, A.; Cleutjens, J. P. M.; van Rooijen, N.; de Winther, M. P. J.; Post, M. J. Local delivery of polarized macrophages improves reperfusion recovery in a mouse hind limb ischemia model. PLoS One 2013, 8, e68811.

[15]

Raimondo, T. M.; Mooney, D. J. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10648–10653.

[16]

Chen, G. Y.; Roy, I.; Yang, C. H.; Prasad, P. N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 2016, 116, 2826–2885.

[17]
Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014 , 35, 393–400.
[18]

Wan, H.; Yue, J. Y.; Zhu, S. J.; Uno, T.; Zhang, X. D.; Yang, Q. L.; Yu, K.; Hong, G. S.; Wang, J. Y.; Li, L. L. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 2018, 9, 1171.

[19]

Welsher, K.; Sherlock, S. P.; Dai, H. J. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.

[20]

Yang, Y. M.; Chen, J.; Shang, X. L.; Feng, Z. J.; Chen, C.; Lu, J. Y.; Cai, J. Y.; Chen, Y. Z.; Zhang, J.; Hao, Y. F. et al. Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears. Adv. Sci. 2019, 6, 1901018.

[21]

Lebaschi, A. H.; Deng, X. H.; Camp, C. L.; Zong, J. C.; Cong, G. T.; Carballo, C. B.; Album, Z.; Rodeo, S. A. Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair. Arthros.: J. Arthros. Relat. Surg. 2018, 34, 1173–1183.

[22]
Chen, M.; Chen, Y. Z.; Feng, S. J.; Dong, S. X.; Sun, L. Y.; Li, H. Z.; Chen, F. C.; Thanh, N. T. K.; Li, Y. X.; Chen, S. Y. et al. SWIR fluorescence imaging in vivo monitoring and evaluating implanted M2 macrophages in skeletal muscle regeneration. Engineering, in press. DOI: 10.1016/j.eng.2023.05.010.
[23]

Keller, E. F.; Segel, L. A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234.

[24]

Zhong, Y. T.; Jin, W. H.; Gao, H.; Sun, L. Y.; Wang, P.; Zhang, J.; Ong, M. T. Y.; Sai Chuen Bruma, F.; Chen, S.; Chen, J. A knitted PET patch enhances the maturation of regenerated tendons in bridging reconstruction of massive rotator cuff tears in a rabbit model. Am. J. Sports Med. 2023, 51, 901–911.

[25]

Chen, J. M.; Yu, Q.; Wu, B.; Lin, Z.; Pavlos, N. J.; Xu, J. K.; Ouyang, H. W.; Wang, A.; Zheng, M. H. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model. Tissue Eng. Part A. 2011, 17, 2037–2048.

[26]

Cong, S.; Sun, Y. Y.; Lin, J. R.; Liu, S. H.; Chen, J. W. A Synthetic graft with multilayered co-electrospinning nanoscaffolds for bridging massive rotator cuff tear in a rat model. Am. J. Sports Med. 2020, 48, 1826–1836.

[27]

Kong, Y. F.; Chen, J.; Fang, H. W.; Heath, G.; Wo, Y.; Wang, W. L.; Li, Y. X.; Guo, Y.; Evans, S. D.; Chen, S. Y. et al. Highly fluorescent ribonuclease-a-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window. Chem. Mater. 2016, 28, 3041–3050.

[28]

Dong, S. X.; Feng, S. J.; Chen, Y. Z.; Chen, M.; Yang, Y. M.; Zhang, J.; Li, H. Z.; Li, X. T.; Ji, L.; Yang, X. et al. Nerve suture combined with ADSCs injection under real-time and dynamic NIR-II fluorescence imaging in peripheral nerve regeneration in vivo. Front. Chem. 2021, 9, 676928.

[29]

Ying, W.; Cheruku, P. S.; Bazer, F. W.; Safe, S. H.; Zhou, B. Y. Investigation of macrophage polarization using bone marrow derived macrophages. J. Vis. Exp. 2013, 23, 50323.

[30]

Marsolais, D.; Cǒté, C. H.; Frenette, J. Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J. Orthop. Res. 2001, 19, 1203–1209.

[31]

Angeline, M. E.; Rodeo, S. A. Biologics in the management of rotator cuff surgery. Clin. Sports Med. 2012, 31, 645–663.

[32]

Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I. I. C. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung. Cancer Res. 2019, 8, 886–894.

[33]

Sun, Y. Y.; Lin, J. R.; Luo, Z. W.; Chen, J. W. Preoperative lymphocyte to monocyte ratio can Be a prognostic factor in arthroscopic repair of small to large rotator cuff tears. Am. J. Sports Med. 2020, 48, 3042–3050.

[34]

Ahn, J. H.; Lee, S. H.; Choi, S. H.; Lim, T. K. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: Comparison of remnant bundle preservation and standard technique. Am. J. Sports Med. 2010, 38, 1768–1777.

[35]

Li, H.; Tao, H. Y.; Cho, S.; Chen, S.; Yao, Z. J.; Chen, S. Y. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: A comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am. J. Sports Med. 2012, 40, 1519–1526.

[36]

Liu, S. H.; Xie, Y. X.; Chen, Q. Y.; Sun, Y. Y.; Ding, Z. C.; Zhang, Y. H.; Chen, S. Y.; Chen, J. W. Tendon healing progression evaluated with magnetic resonance imaging signal intensity and its correlation with clinical outcomes within 1 year after rotator cuff repair with the suture-bridge technique. Am. J. Sports Med. 2020, 48, 697–705.

File
12274_2023_6363_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2023
Revised: 23 November 2023
Accepted: 23 November 2023
Published: 12 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This animal research received the approval of ethics by Ethics Committee of Fudan University (No. 202208005Z). This work was supported by the National Natural Science Foundation of China (Nos. 81972129, 82072521, and 82111530200), Shanghai Talent Development Funding Scheme (No. 2020080), and Shanghai Committee of Science and Technology (Nos. 22DZ2204900 and 23ZR1445700). J. Chen and N. T. K. Thanh thank the Royal Society and National Natural Science Foundation of China for the International Exchanges program for funding. The authors thank Hao Chen and his team from Shanghai Institute of Materia Medica, Chinese Academy of Sciences for providing the NIR-II fluorescence imaging instrument.

Return