Journal Home > Volume 17 , Issue 5

The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis. The spontaneous polarization property can induce the formation of built-in electric field, which can improve the separation of photoelectrons and holes to affect photocatalytic performance. The internal electric field induced by spontaneous polarization can be influenced by multiple factors such as the morphology, the concentration of defect, the type of doped heteroatoms, as well as the composition of heterostructures. Besides, the preparation method, pretreating temperature, the strength of prepolarized external electric field of ferroelectric-based photocatalysts as well as the strength of external mechanical force or external magnetic field in photocatalytic reactions can influence the photocatalytic effectivity via influencing spontaneous polarization-induced internal electric field. Thus, it is urgently to unveil the mystery of structure–activity relationships for ferroelectric materials-based photocatalysts, which is usually uncertain. With this in mind, this review was provided for the role of various complex influencing factors on ferroelectric materials-based photocatalysis based on the latest advancement in the fields of new energy development, environmental remediation. In the beginning, the basic structure and properties of ferroelectric material are given. Then, popular synthesis methods of ferroelectric-based photocatalysts are summarized. After that, two main mechanisms of ferroelectric photocatalysis are discussed. The research progress of ferroelectric photocatalysis is then given emphatically according to the classification of photocatalytic reactions. Finally, the problems existing nowadays and the challenges facing in the future on the application of ferroelectric materials-based photocatalysts are outlined in the summary and outlook section.


menu
Abstract
Full text
Outline
About this article

The unique spontaneous polarization property and application of ferroelectric materials in photocatalysis

Show Author's information Jinghua An1Chang Xu1Lu Li1( )Bo Tang1,2( )
College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao 266237, China

Abstract

The unique spontaneous polarization property of ferroelectric material makes it to be a special catalyst in photocatalysis. The spontaneous polarization property can induce the formation of built-in electric field, which can improve the separation of photoelectrons and holes to affect photocatalytic performance. The internal electric field induced by spontaneous polarization can be influenced by multiple factors such as the morphology, the concentration of defect, the type of doped heteroatoms, as well as the composition of heterostructures. Besides, the preparation method, pretreating temperature, the strength of prepolarized external electric field of ferroelectric-based photocatalysts as well as the strength of external mechanical force or external magnetic field in photocatalytic reactions can influence the photocatalytic effectivity via influencing spontaneous polarization-induced internal electric field. Thus, it is urgently to unveil the mystery of structure–activity relationships for ferroelectric materials-based photocatalysts, which is usually uncertain. With this in mind, this review was provided for the role of various complex influencing factors on ferroelectric materials-based photocatalysis based on the latest advancement in the fields of new energy development, environmental remediation. In the beginning, the basic structure and properties of ferroelectric material are given. Then, popular synthesis methods of ferroelectric-based photocatalysts are summarized. After that, two main mechanisms of ferroelectric photocatalysis are discussed. The research progress of ferroelectric photocatalysis is then given emphatically according to the classification of photocatalytic reactions. Finally, the problems existing nowadays and the challenges facing in the future on the application of ferroelectric materials-based photocatalysts are outlined in the summary and outlook section.

Keywords: ferroelectric, photocatalysis, spontaneous polarization, separation of electrons and holes

References(134)

[1]

Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

[2]

Bie, C. B.; Wang, L. X.; Yu, J. G. Challenges for photocatalytic overall water splitting. Chem 2022, 8, 1567–1574.

[3]

Ren, P. N.; Gao, Z. Y.; Montini, T.; Zhao, Z. T.; Ta, N.; Huang, Y. K.; Luo, N. C.; Fonda, E.; Fornasiero, P.; Wang, F. Stepwise photoassisted decomposition of carbohydrates to H2. Joule 2023, 7, 333–349.

[4]

Zhang, C. F.; Shen, X. J.; Jin, Y. C.; Cheng, J. L.; Cai, C.; Wang, F. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 2023, 123, 4510–4601.

[5]

Lee, S.; Bae, H. S.; Choi, W. Selective control and characteristics of water oxidation and dioxygen reduction in environmental photo(electro)catalytic systems. Acc. Chem. Res. 2023, 56, 867–877.

[6]

Wang, M.; Zhou, H. R.; Wang, F. Photocatalytic production of syngas from biomass. Acc. Chem. Res. 2023, 56, 1057–1069.

[7]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[8]

Chen, R. T.; Ren, Z. F.; Liang, Y.; Zhang, G. H.; Dittrich, T.; Liu, R. Z.; Liu, Y.; Zhao, Y.; Pang, S.; An, H. Y. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 2022, 610, 296–301.

[9]

Mao, X. W.; Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 2022, 21, 331–337.

[10]

Yuan, S. X.; Su, K.; Feng, Y. X.; Zhang, M.; Lu, T. B. Lattice-matched in-situ construction of 2D/2D T-SrTiO3/CsPbBr3 heterostructure for efficient photocatalysis of CO2 reduction. Chin. Chem. Lett. 2023, 34, 107682.

[11]

Chen, Z. Y.; Li, S. H.; Mo, Q. J.; Zhang, L.; Su, C. Y. Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. Chin. Chem. Lett. 2023, 34, 108196.

[12]

Li, G.; Wang, P.; He, M.; Yuan, X. L.; Tang, L. L.; Li, Z. X. Cerium-based nanomaterials for photo/electrocatalysis. Sci. China Chem. 2023, 66, 2204–2220.

[13]

Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771–11778.

[14]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[15]

Sun, Z. X.; Sun, K.; Gao, M. L.; Metin, Ö.; Jiang, H. L. Optimizing Pt electronic states through formation of a Schottky junction on non-reducible metal-organic frameworks for enhanced photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202206108.

[16]

Bai, L. Q.; Huang, H. W.; Zhang, S. G.; Hao, L.; Zhang, Z. L.; Li, H. F.; Sun, L.; Guo, L. N.; Huang, H. T.; Zhang, Y. H. Photocatalysis-assisted Co3O4/g-C3N4 p-n junction all-solid-state supercapacitors: A bridge between energy storage and photocatalysis. Adv. Sci. 2020, 7, 2001939.

[17]

Zhang, S. L.; Wang, Q. J.; Zhang, P.; Wang, J.; Li, Y.; Lu, C.; Sarwar, M. T.; Dong, X. B.; Zhao, Q. H.; Tang, A. D. et al. Nanoclay-modulated interfacial chemical bond and internal electric field at the Co3O4/TiO2 p-n junction for efficient charge separation. Small 2023, 19, 2300770.

[18]

Jiang, X. Y.; Zhang, Z. Y.; Sun, M. H.; Liu, W. Z.; Huang, J. D.; Xu, H. Y. Self-assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion. Appl. Catal. B: Environ. 2021, 281, 119473.

[19]

Liu, C.; Feng, Y.; Han, Z. T.; Sun, Y.; Wang, X. Q.; Zhang, Q. F.; Zou, Z. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chin. J. Catal. 2021, 42, 164–174.

[20]

Zhou, H. R.; Wang, M.; Wang, F. Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. Chem 2022, 8, 465–479.

[21]

Li, T. R.; Song, Y. Y.; Jiang, J. J.; Li, M. Y.; Ma, Y. H.; Dong, S. S. NiCo2O4/BiOCl/Bi24O31Br10 ternary Z-scheme heterojunction enhance peroxymonosulfate activation under visible light: Catalyst synthesis and reaction mechanism. Chin. Chem. Lett. 2023, 34, 107503.

[22]

Xiao, R. X.; Zhang, J.; Jiang, T. T.; Zhou, Y. F.; Wang, Y.; Xu, W. J.; Feng, Y. H. Highly ordered Janus CdS-Au-TiO2 Z-scheme structure with high efficiency in photocatalysis. Sci. China Chem. 2023, 66, 1722–1730.

[23]

Bi, F.; Su, Y. T.; Zhang, Y. L.; Chen, M. L.; Darr, J. A.; Weng, X. L.; Wu, Z. B. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl. Catal. B: Environ. 2022, 306, 121109.

[24]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[25]

Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.

[26]

Zhang, J.; Chen, X. B.; Bai, Y.; Li, C.; Gao, Y.; Li, R. G.; Li, C. Boosting photocatalytic water splitting by tuning built-in electric field at phase junction. J. Mater. Chem. A 2019, 7, 10264–10272.

[27]

Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

[28]

Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3– x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87–96.

[29]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[30]

Chao, Y. G.; Zhang, W. Y.; Zhou, P.; Chen, H.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Guo, S. J. An in-situ NH4+-etched strategy for anchoring atomic Mo site on ZnIn2S4 hierarchical nanotubes for superior hydrogen photocatalysis. Sci. China Chem. 2021, 64, 1716–1722.

[31]

Li, X. B.; Tung, C. H.; Wu, L. Z. Quantum dot assembly for light-driven multielectron redox reactions, such as hydrogen evolution and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 10804–10811.

[32]

Li, S.; Zhao, Z. C.; Zhao, J. Z.; Zhang, Z. T.; Li, X.; Zhang, J. M. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079.

[33]

Wan, T. L.; Ge, L.; Pan, Y. L.; Yuan, Q. H.; Liu, L.; Sarina, S.; Kou, L. Z. Catalysis based on ferroelectrics: Controllable chemical reaction with boosted efficiency. Nanoscale 2021, 13, 7096–7107.

[34]

Liu, Y.; Zhang, M. J.; Wang, Z.; He, J. D.; Zhang, J.; Ye, S.; Wang, X. L.; Li, D. F.; Yin, H.; Zhu, Q. H. et al. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts. Nat. Commun. 2022, 13, 4245.

[35]

Yoshida, S.; Fujita, K.; Akamatsu, H.; Hernandez, O.; Sen Gupta, A.; Brown, F. G.; Padmanabhan, H.; Gibbs, A. S.; Kuge, T.; Tsuji, R. et al. Ferroelectric Sr3Zr2O7: Competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv. Funct. Mater. 2018, 28, 1801856.

[36]

Zhou, X. F.; Shen, B.; Zhai, J. W.; Hedin, N. Reactive oxygenated species generated on iodide-doped BiVO4/BaTiO3 heterostructures with Ag/Cu nanoparticles by coupled piezophototronic effect and plasmonic excitation. Adv. Funct. Mater. 2021, 31, 2009594.

[37]

Wang, R. C.; Xu, L. L.; Liu, Q. S.; Shi, Q.; Liu, X. J. Search for simple β-AIMIIIO2-type intrinsic ferroelectric semiconductors with simultaneous robust built-in electric field and full-spectrum absorption for superior photocatalysts. J. Mater. Chem. A 2023, 11, 5233–5244.

[38]

Yang, Z.; Li, X. L.; Gao, L. J.; Zhang, W.; Wang, X. Z.; Liu, H. X.; Wang, S. F.; Pan, C. F.; Guo, L. J. Ferro-pyro-phototronic effect enhanced self-powered, flexible and ultra-stable photodetectors based on highly crystalized 1D/3D ferroelectric perovskite film. Nano Energy 2022, 102, 107743.

[39]

Kang, Y. Y.; Qi, H. Z.; Wan, G. D.; Zhen, C.; Xu, X. X.; Yin, L. C.; Wang, L. Z.; Liu, G.; Cheng, H. M. Ferroelectric polarization enabled spatially selective adsorption of redox mediators to promote Z-scheme photocatalytic overall water splitting. Joule 2022, 6, 1876–1886.

[40]

Assavachin, S.; Osterloh, F. E. Ferroelectric polarization in BaTiO3 nanocrystals controls photoelectrochemical water oxidation and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 18825–18833.

[41]

Amdouni, W.; Fricaudet, M.; Otoničar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui-Meherzi, H.; Dkhil, B. BiFeO3 nanoparticles: The “Holy-Grail” of piezo-photocatalysts. Adv. Mater. 2023, 35, 2301841.

[42]

Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.

[43]

Khan, M. A.; Nadeem, M. A.; Idriss, H. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review. Surf. Sci. Rep. 2016, 71, 1–31.

[44]

Li, Y.; Li, J.; Yang, W. G.; Wang, X. D. Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting. Nanoscale Horiz. 2020, 5, 1174–1187.

[45]

Zhao, Y.; Wang, H.; Zhao, W.; Zhao, X. L.; Xu, J. J.; Chen, H. Y. Dark-field imaging of cation exchange synthesis of Cu2– x S@Au2S@Au nanoplates toward the plasmonic enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 6515–6521.

[46]

Hermans, Y.; Olivier, C.; Junge, H.; Klein, A.; Jaegermann, W.; Toupance, T. Sunlight selective photodeposition of CoO x (OH) y and NiO x (OH) y on truncated bipyramidal BiVO4 for highly efficient photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 53910–53920.

[47]

Zhen, C.; Ren, Z. H.; Kang, Y. Y.; Wang, L. Z.; Liu, G. PbTiO3 based single-domain ferroelectric photocatalysts for water splitting. Acc. Mater. Res. 2023, 4, 591–603.

[48]

Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

[49]

Valasek, J. Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 1921, 17, 475–481.

[50]

Su, R.; Shen, Y. J.; Li, L. L.; Zhang, D. W.; Yang, G.; Gao, C. B.; Yang, Y. D. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small 2015, 11, 202–207.

[51]

Zhao, K.; Ouyang, B. S.; Bowen, C. R.; Yang, Y. Enhanced photocurrent via ferro-pyro-phototronic effect in ferroelectric BaTiO3 materials for a self-powered flexible photodetector system. Nano Energy 2020, 77, 105152.

[52]

Jian, G.; Jiao, Y.; Meng, Q. Z.; Guo, Y. H.; Wang, F. W.; Zhang, J. Q.; Wang, C.; Moon, K. S.; Wong, C. P. Excellent high-temperature piezoelectric energy harvesting properties in flexible polyimide/3D PbTiO3 flower composites. Nano Energy 2021, 82, 105778.

[53]

Kwon, O.; Seol, D.; Qiao, H. M.; Kim, Y. Recent progress in the nanoscale evaluation of piezoelectric and ferroelectric properties via scanning probe microscopy. Adv. Sci. 2020, 7, 1901391.

[54]

Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K. Y.; Mao, E. Y.; Mei, B.; Mul, G. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

[55]

Gou, J.; Bai, H.; Zhang, X. L.; Huang, Y. L.; Duan, S. S.; Ariando, A.; Yang, S. A.; Chen, L.; Lu, Y. H.; Wee, A. T. S. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature 2023, 617, 67–72.

[56]

Yu, H. J.; Huang, H. W.; Reshak, A. H.; Auluck, S.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Appl. Catal. B: Environ. 2021, 284, 119709.

[57]

Xie, Z. S.; Tang, X. L.; Shi, J. F.; Wang, Y. J.; Yuan, G. L.; Liu, J. M. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method. Nano Energy 2022, 98, 107247.

[58]

Chen, F.; Huang, H. W.; Guo, L.; Zhang, Y. H.; Ma, T. Y. The role of polarization in photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 10061–10073.

[59]

Molinari, A.; Witte, R.; Neelisetty, K. K.; Gorji, S.; Kübel, C.; Münch, I.; Wöhler, F.; Hahn, L.; Hengsbach, S.; Bade, K. et al. Configurable resistive response in BaTiO3 ferroelectric memristors via electron beam radiation. Adv. Mater. 2020, 32, 1907541.

[60]

Huang, H. W.; Tu, S. C.; Du, X.; Zhang, Y. H. Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. J. Colloid Interface Sci. 2018, 509, 113–122.

[61]

Liu, Y.; Ye, S.; Xie, H. C.; Zhu, J.; Shi, Q.; Ta, N.; Chen, R. T.; Gao, Y. Y.; An, H. Y.; Nie, W. et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 2020, 32, 1906513.

[62]

Morris, M. R.; Pendlebury, S. R.; Hong, J.; Dunn, S.; Durrant, J. R. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv. Mater. 2016, 28, 7123–7128.

[63]

Li, L. N.; Liu, X. T.; He, C.; Wang, S. S.; Ji, C. M.; Zhang, X. Y.; Sun, Z. H.; Zhao, S. G.; Hong, M. C.; Luo, J. H. A potential Sn-based hybrid perovskite ferroelectric semiconductor. J. Am. Chem. Soc. 2020, 142, 1159–1163.

[64]

Xu, X. L.; Chen, S. J.; Wu, Z.; Jia, Y. M.; Xiao, L. B.; Liu, Y. S. Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy 2018, 50, 581–588.

[65]

Wang, C. Y.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Pyroelectric catalysis. Nano Energy 2020, 78, 105371.

[66]

Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.

[67]

Li, N.; Zhu, R. X.; Cheng, X. X.; Liu, H. J.; Zhang, Z. Y.; Huang, Y. L.; Chu, Y. H.; Chen, L. Q.; Ikuhara, Y.; Gao, P. Dislocation-induced large local polarization inhomogeneity of ferroelectric materials. Scr. Mater. 2021, 194, 113624.

[68]

Zhou, X. F.; Yan, F.; Wu, S. H.; Shen, B.; Zeng, H. R.; Zhai, J. W. Remarkable piezophoto coupling catalysis behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166Br0.834) piezoelectric composites. Small 2020, 16, 2001573.

[69]

Jing, L. Q.; Xu, Y. G.; Xie, M.; Li, Z.; Wu, C. C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y. B.; Zhong, N. et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy 2023, 112, 108508.

[70]

Feng, Y. W.; Xu, M. J.; Liu, H.; Li, W.; Li, H. X.; Bian, Z. F. Charge separation and interfacial selectivity induced by synergistic effect of ferroelectricity and piezoelectricity on PbTiO3 monocrystalline nanoplates. Nano Energy 2020, 73, 104768.

[71]

Xu, X. G.; Lin, X. J.; Yang, F. H.; Huang, S. F.; Cheng, X. Piezo-photocatalytic activity of Bi0.5Na0.5TiO3@TiO2 composite catalyst with heterojunction for degradation of organic dye molecule. J. Phys. Chem. C 2020, 124, 24126–24134.

[72]

Wu, J. R.; Wang, W. W.; Tian, Y.; Song, C. X.; Qiu, H.; Xue, H. Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants. Nano Energy 2020, 77, 105122.

[73]

Wang, Z. P.; Song, J. M.; Gao, F.; Su, R.; Zhang, D. W.; Liu, Y.; Xu, C. C.; Lou, X. J.; Yang, Y. D. Developing a ferroelectric nanohybrid for enhanced photocatalysis. Chem. Commun. 2017, 53, 7596–7599.

[74]

Li, S. G.; Bai, L. Q.; Ji, N.; Yu, S.; Lin, S. X.; Tian, N.; Huang, H. W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 2020, 8, 9268–9277.

[75]

Park, S.; Lee, C. W.; Kang, M. G.; Kim, S.; Kim, H. J.; Kwon, J. E.; Park, S. Y.; Kang, C. Y.; Hong, K. S.; Nam, K. T. A ferroelectric photocatalyst for enhancing hydrogen evolution: Polarized particulate suspension. Phys. Chem. Chem. Phys. 2014, 16, 10408–10413.

[76]

Cui, Y. F.; Sun, H. H.; Shen, G. D.; Jing, P. P.; Pu, Y. P. Effect of dual-cocatalyst surface modification on photodegradation activity, pathway, and mechanisms with highly efficient Ag/BaTiO3/MnO x . Langmuir 2020, 36, 498–509.

[77]

Chen, F.; Ren, Z. H.; Gong, S. Y.; Li, X.; Shen, G.; Han, G. R. Selective deposition of silver oxide on single-domain ferroelectric nanoplates and their efficient visible-light photoactivity. Chem.—Eur. J. 2016, 22, 12160–12165.

[78]

Zhao, H.; Mao, Q. Y.; Jian, L.; Dong, Y. M.; Zhu, Y. F. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chin. J. Catal. 2022, 43, 1774–1804.

[79]

Chao, C. Y.; Zhou, Y. S.; Li, H.; He, W. W.; Fa, W. J. Polarization-induced selective growth of Au islands on single-domain ferroelectric PbTiO3 nanoplates with enhanced photocatalytic activity. Appl. Surf. Sci. 2019, 466, 274–281.

[80]

Jiang, S.; Ren, Z. H.; Li, M.; Gong, S. Y.; Yu, Y. F.; Pei, J. Y.; Wei, X.; Shen, G.; Han, G. R. Single-crystal heterostructured PbTiO3/CdS nanorods with enhanced visible-light-driven photocatalytic performance. RSC Adv. 2015, 5, 54454–54459.

[81]

Li, W.; Wang, F.; Li, M.; Chen, X.; Ren, Z. H.; Tian, H.; Li, X.; Lu, Y. H.; Han, G. R. Polarization-dependent epitaxial growth and photocatalytic performance of ferroelectric oxide heterostructures. Nano Energy 2018, 45, 304–310.

[82]

Xu, T. T.; Niu, P.; Wang, S. L.; Li, L. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3. J. Mater. Sci. Technol. 2021, 74, 128–135.

[83]

Huang, X. Y.; Wang, K. Q.; Wang, Y. Z.; Wang, B.; Zhang, L. L.; Gao, F.; Zhao, Y.; Feng, W. H.; Zhang, S. Y.; Liu, P. Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field. Appl. Catal. B: Environ. 2018, 227, 322–329.

[84]

Wang, P. L.; Fan, S. Y.; Li, X. Y.; Wang, J.; Liu, Z. Y.; Bai, C. P.; Tadé, M. O.; Liu, S. M. Piezotronic effect and hierarchical Z-scheme heterostructure stimulated photocatalytic H2 evolution integrated with C–N coupling of benzylamine. Nano Energy 2021, 89, 106349.

[85]

Lin, B.; Chaturvedi, A.; Di, J.; You, L.; Lai, C.; Duan, R. H.; Zhou, J. D.; Xu, B. R.; Chen, Z. H.; Song, P. et al. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy 2020, 76, 104972.

[86]

Zhen, C.; Yu, J. C.; Liu, G.; Cheng, H. M. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates. Chem. Commun. 2014, 50, 10416–10419.

[87]

Liu, G.; Ma, L.; Yin, L. C.; Wan, G. D.; Zhu, H. Z.; Zhen, C.; Yang, Y. Q.; Liang, Y.; Tan, J.; Cheng, H. M. Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2018, 2, 1095–1107.

[88]

You, H. L.; Li, S. Q.; Fan, Y. L.; Guo, X. Y.; Lin, Z. Z.; Ding, R.; Cheng, X.; Zhang, H.; Lo, T. W. B.; Hao, J. H. et al. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles. Nat. Commun. 2022, 13, 6144.

[89]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[90]

Luo, N. C.; Montini, T.; Zhang, J.; Fornasiero, P.; Fonda, E.; Hou, T. T.; Nie, W.; Lu, J. M.; Liu, J. X.; Heggen, M. et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy 2019, 4, 575–584.

[91]

Roeffaers, M. B. J.; Sels, B. F.; Uji-i, H.; De Schryver, F. C.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 2006, 439, 572–575.

[92]

Lim, K.; Ropp, C.; Barik, S.; Fourkas, J.; Shapiro, B.; Waks, E. Nanostructure-induced distortion in single-emitter microscopy. Nano Lett. 2016, 16, 5415–5419.

[93]

Sharma, M.; Vaish, R.; Ibrahim, S. M. Effect of poling condition on piezocatalysis activity of BaTiO3-cement composites. Mater. Lett. 2020, 280, 128583.

[94]

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

[95]

Qi, K. Z.; Liu, S. Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875.

[96]

Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

[97]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

[98]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[99]

Tu, S. C.; Zhang, Y. H.; Reshak, A. H.; Auluck, S.; Ye, L. Q.; Han, X. P.; Ma, T. Y.; Huang, H. W. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy 2019, 56, 840–850.

[100]

Wang, M.; Khan, M. A.; Mohsin, I.; Wicks, J.; Ip, A. H.; Sumon, K. Z.; Dinh, C. T.; Sargent, E. H.; Gates, I. D.; Kibria, M. G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes. Energy Environ. Sci. 2021, 14, 2535–2548.

[101]

Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.

[102]

Tong, F. X.; Liang, X. Z.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Cheng, H. F.; Dai, Y.; Zheng, Z. K.; Huang, B. B. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle Level. ACS Catal. 2021, 11, 10814–10823.

[103]

Gao, W. Q.; Liu, Q. L.; Zhang, S.; Yang, Y. Y.; Zhang, X. F.; Zhao, H.; Qin, W.; Zhou, W. J.; Wang, X. N.; Liu, H. et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core–shell hybrid nanostructure enhancing charge separation for high performance photocatalysis. Nano Energy 2020, 71, 104624.

[104]

Gao, W. Q.; Lu, J. B.; Zhang, S.; Zhang, X. F.; Wang, Z. X.; Qin, W.; Wang, J. J.; Zhou, W. J.; Liu, H.; Sang, Y. H. Suppressing photoinduced charge recombination via the lorentz force in a photocatalytic system. Adv. Sci. 2019, 6, 1901244.

[105]

Wang, J. L.; Jiang, H. J.; He, Z.; Liu, J. W.; Wang, R.; Huang, W. R.; Feng, L. T.; Ren, X. F.; Hou, Z. H.; Yu, S. H. Radial nanowire assemblies under rotating magnetic field enabled efficient charge separation. Nano Lett. 2020, 20, 2763–2769.

[106]

Hu, C.; Huang, H. W.; Chen, F.; Zhang, Y. H.; Yu, H.; Ma, T. Y. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 2020, 30, 1908168.

[107]

Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

[108]

Li, J. F.; Liu, X. M.; Zheng, Y. F.; Cui, Z. D.; Jiang, H.; Li, Z. Y.; Zhu, S. L.; Wu, S. L. Achieving fast charge separation by ferroelectric ultrasonic interfacial engineering for rapid sonotherapy of bacteria-infected osteomyelitis. Adv. Mater. 2023, 35, 2210296.

[109]

Cui, Y. F.; Briscoe, J.; Wang, Y. Q.; Tarakina, N. V.; Dunn, S. Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control. ACS Appl. Mater. Interfaces 2017, 9, 24518–24526.

[110]

Zhu, S. M.; Qian, X. J.; Lan, D. P.; Yu, Z. Y.; Wang, X. X.; Su, W. Y. Accelerating charge transfer for highly efficient visible-light-driven photocatalytic H2 production: In-situ constructing Schottky junction via anchoring Ni-P alloy onto defect-rich ZnS. Appl. Catal. B: Environ. 2020, 269, 118806.

[111]

Zhong, W. W.; Shen, S. J.; He, M.; Wang, D.; Wang, Z. P.; Lin, Z. P.; Tu, W. G.; Yu, J. G. The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 258, 117967.

[112]

Xu, S. Y.; Guo, L. M.; Sun, Q. J.; Wang, Z. L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Funct. Mater. 2019, 29, 1808737.

[113]

Zhai, Y. F.; Zhang, Y.; Yin, J.; Fan, X. Y. Enhanced photocatalytic property of Ag loaded on well-defined ferroelectric Na3VO2B6O11 crystals under visible light irradiation. Appl. Surf. Sci. 2019, 484, 981–989.

[114]

Lan, S. Y.; Feng, J. X.; Xiong, Y.; Tian, S. H.; Liu, S. W.; Kong, L. J. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: Finding of effective piezo-dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569.

[115]

Wang, H. H.; Zhang, T.; Zhou, X. C. Dark-field spectroscopy: Development, applications and perspectives in single nanoparticle catalysis. J. Phys.: Condens. Matter 2019, 31, 473001.

[116]

Lin, E. Z.; Kang, Z. H.; Wu, J.; Huang, R.; Qin, N.; Bao, D. H. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B: Environ. 2021, 285, 119823.

[117]

Zhou, L. P.; Dai, S. Q.; Xu, S.; She, Y. Q.; Li, Y. L.; Leveneur, S.; Qin, Y. L. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl. Catal. B: Environ. 2021, 291, 120019.

[118]

Tian, W. R.; Han, J.; Wan, L. C.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; Lu, J. M. Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 2023, 107, 108165.

[119]

Zhang, Z.; Zou, C. T.; Yang, S. J.; Yang, Z. Y.; Yang, Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation. Chem. Eng. J. 2021, 410, 128430.

[120]

Li, H. F.; Quan, X.; Chen, S.; Yu, H. T. Ferroelectric-enhanced Z-schematic electron transfer in BiVO4-BiFeO3-CuInS2 for efficient photocatalytic pollutant degradation. Appl. Catal. B: Environ. 2017, 209, 591–599.

[121]

Lei, Y. Q.; Xu, S. Y.; Ding, M.; Li, L. L.; Sun, Q. J.; Wang, Z. L. Enhanced photocatalysis by synergistic piezotronic effect and exciton-plasmon interaction based on (Ag-Ag2S)/BaTiO3 heterostructures. Adv. Funct. Mater. 2020, 30, 2005716.

[122]

Cui, Y. F.; Briscoe, J.; Dunn, S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-influence on the carrier separation and stern layer formation. Chem. Mater. 2013, 25, 4215–4223.

[123]

Fan, X. Y.; Zang, L.; Zhang, M.; Qiu, H. S.; Wang, Z.; Yin, J.; Jia, H. Z.; Pan, S. L.; Wang, C. Y. A bulk boron-based photocatalyst for efficient dechlorination: K3B6O10Br. Chem. Mater. 2014, 26, 3169–3174.

[124]

Zhao, C. Y.; Tian, W. M.; Sun, Q.; Yin, Z. X.; Leng, J.; Wang, S. P.; Liu, J. X.; Wu, K. F.; Jin, S. Y. Trap-enabled long-distance carrier transport in perovskite quantum wells. J. Am. Chem. Soc. 2020, 142, 15091–15097.

[125]

Zhou, Q.; Shi, Q. Y.; Li, N. J.; Chen, D. Y.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Rh-Doped SrTiO3 inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A. Environ. Sci.: Nano 2020, 7, 2267–2277.

[126]

Kappadan, S.; Thomas, S.; Kalarikkal, N. Enhanced photocatalytic performance of BaTiO3/g-C3N4 heterojunction for the degradation of organic pollutants. Chem. Phys. Lett. 2021, 771, 138513.

[127]

Zhang, Q.; Shi, Y. Y.; Shi, X. J.; Huang, T. T.; Lee, S.; Huang, Y.; Cao, J. J. Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Appl. Catal. B: Environ. 2022, 302, 120876.

[128]

Dong, G. H.; Yang, L. P.; Wang, F.; Zang, L.; Wang, C. Y. Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides. ACS Catal. 2016, 6, 6511–6519.

[129]

Folli, A.; Bloh, J. Z.; Armstrong, K.; Richards, E.; Murphy, D. M.; Lu, L.; Kiely, C. J.; Morgan, D. J.; Smith, R. I.; McLaughlin, A. C. et al. Improving the selectivity of photocatalytic NO x abatement through improved O2 reduction pathways using Ti0.909W0.091O2N x semiconductor nanoparticles: From characterization to photocatalytic performance. ACS Catal. 2018, 8, 6927–6938.

[130]

Fujiwara, K.; Müller, U.; Pratsinis, S. E. Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catal. 2016, 6, 1887–1893.

[131]

Pramanik, R.; Sahukar, M. K.; Mohan, Y.; Praveenkumar, B.; Sangawar, S. R.; Arockiarajan, A. Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Ceram. Int. 2019, 45, 5731–5742.

[132]

Muthuramalingam, M.; Jain Ruth, D. E.; Veera Gajendra Babu, M.; Ponpandian, N.; Mangalaraj, D.; Sundarakannan, B. Isothermal grain growth and effect of grain size on piezoelectric constant of Na0.5Bi0.5TiO3 ceramics. Scr. Mater. 2016, 112, 58–61.

[133]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[134]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 September 2023
Revised: 26 October 2023
Accepted: 21 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21927811, 22002076, 22074082, 22106093, and 22276115), as well as the Excellent Youth Overseas Project of Shandong Province (No. 2023HWYQ-075).

Return