Journal Home > Volume 17 , Issue 5

Thermal barrier coatings (TBCs) in gas turbine engines are used in expressly harsh environments; thus, assessing TBC integrity status is critical for safety and reliability. However, traditional periodic maintenance involves visual inspections of the TBCs, requiring the gas turbine to be decommissioned and partially dismantled. Most importantly, tiny defects or internal damages that easily cause coating failure cannot be identified. In this work, a new nondestructive evaluation (NDE) technique of TBCs based on quantum dot (QD) anion exchange is first explored internationally. By exchanging anions between the Cl ions and the CsPbBr3 QDs, the degrees of salt corrosion of the TBCs are evaluated. The resultant NDE technique shows that the colour of the TBCs obviously changes from green to blue, accompanied by a large blueshift (~ 100 nm) of the photoluminescence (PL) peak position. In addition, the relationship between the PL peak position and coating thermophysical properties indicates that the precision of this NDE technique may easily identify the μm-level of the thermal growth oxide (TGO) changes inside the TBCs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-precision nondestructive evaluation of a thermal barrier coating based on perovskite quantum dot anion exchange

Show Author's information Tao Han1( )Shufang Ding1Zifan Wang2Sirong Jiang1Pengjiang Jing1Tianshang Yi1Yaqi Chen1Chunzhi Jiang1Xiaofeng Zhang2( )
Microelectronics and Optoelectronics Technology Key Laboratory of Hunan Higher Education, School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
National Engineering Laboratory for Modern Materials Surface Engineering Technology & The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China

Abstract

Thermal barrier coatings (TBCs) in gas turbine engines are used in expressly harsh environments; thus, assessing TBC integrity status is critical for safety and reliability. However, traditional periodic maintenance involves visual inspections of the TBCs, requiring the gas turbine to be decommissioned and partially dismantled. Most importantly, tiny defects or internal damages that easily cause coating failure cannot be identified. In this work, a new nondestructive evaluation (NDE) technique of TBCs based on quantum dot (QD) anion exchange is first explored internationally. By exchanging anions between the Cl ions and the CsPbBr3 QDs, the degrees of salt corrosion of the TBCs are evaluated. The resultant NDE technique shows that the colour of the TBCs obviously changes from green to blue, accompanied by a large blueshift (~ 100 nm) of the photoluminescence (PL) peak position. In addition, the relationship between the PL peak position and coating thermophysical properties indicates that the precision of this NDE technique may easily identify the μm-level of the thermal growth oxide (TGO) changes inside the TBCs.

Keywords: anion exchange, thermal barrier coatings, nondestructive evaluation, thermal growth oxide, CsPbBr3 quantum dot

References(46)

[1]

Liu, Q. M.; Huang, S. Z.; He, A. J. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. J. Mater. Sci. Technol. 2019, 35, 2814–2823.

[2]

Kumar, V.; Balasubramanian, K. Progress update on failure mechanisms of advanced thermal barrier coatings: A Review. Prog. Org. Coat. 2016, 90, 54–82.

[3]

Cheng, Y. X.; Wang, Y.; Yuan, F. H. Key technologies and problems of thermal barrier coating application on aeroengine turbine vane and blade. Aeronaut. Manuf. Technol. 2017, 28–34

[4]

Shi, J. D.; He J. Service environment simulation test method of thermal barrier coatings. J. Aeronaut. Mater. 2018, 38, 32–42.

[5]

Wang, H.; Liu, J.; Shi, Y.; Wang, T. Research and application of active infrared thermography in aero-engine blade defect detection. Laser Infrared 2021, 51, 1554–1562.

[6]

Cipitria, A.; Golosnoy, I. O.; Clyne, T. W. Sintering kinetics of plasma-sprayed zirconia TBCs. J. Therm. Spray Technol. 2007, 16, 809–815.

[7]

Li, J. C.; He, Q.; Lv, Y. F.; Liang, L. K. Research progress on non-destructive testing method of thermal barrier coatings. China Surf. Eng. 2019, 32, 16–26.

[8]

Pomeroy, M. J. Coatings for gas turbine materials and long term stability issues. Mater. Des. 2005, 26, 223–231.

[9]
Chen, G. Non-destructive evaluation (NDE) of the failure of thermal barrier coatings. In Thermal Barrier Coatings. Xu, H. B.; Guo, H. B., Eds.; Woodhead Pub. Ltd.: Cambridge, 2011; pp 243–262.
DOI
[10]

Jawad, G. N.; Akbar, M. F. IFFT-based microwave non-destructive testing for delamination detection and thickness estimation. IEEE Access 2021, 9, 98561–98572.

[11]

Cernuschi, F.; Capelli, S.; Bison, P.; Marinetti, S.; Lorenzoni, L.; Campagnoli, E.; Giolli, C. Non-destructive thermographic monitoring of crack evolution of thermal barrier coating coupons during cyclic oxidation aging. Acta Mater. 2011, 59, 6351–6361.

[12]

Unnikrishnakurup, S.; Dash, J.; Ray, S.; Pesala, B.; Balasubramaniam, K. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: A comparative study. NDT E Int. 2020, 116, 102367.

[13]

Fukuchi, T.; Ozeki, T.; Okada, M.; Fujii, T. Nondestructive inspection of thermal barrier coating of gas turbine high temperature components. IEEJ Trans. Electr. Eng. 2016, 11, 391–400.

[14]

Zhao, S. B.; Wang, H. M.; Wu, N. M.; Zhang, C. L. Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography. Russ. J. Nondestruct. Test. 2015, 51, 445–456.

[15]

Heyes, A. L.; Feist, J. P.; Chen, X.; Mutasim, Z.; Nicholls, J. R. Optical nondestructive condition monitoring of thermal barrier coatings. J. Eng. Gas Turbines Power. 2008, 130, 061301.

[16]

Vavilov, V. P.; Shiryaev, V. V.; Khorev, V. S. Processing of active thermal nondestructive testing results by the method of wavelet analysis. Russ. J. Nondestruct. Test. 2011, 47, 276–283.

[17]

Vavilov, V. P.; Marinetti, S.; Cernuschi, F.; Roba, D. Thermal nondestructive testing of thermal-barrier coatings of turbine buckets. Russ. J. Nondestruct. Test. 2005, 41, 466–472.

[18]

Cernuschi, F.; Bison, P. Thirty years of thermal barrier coatings (TBC), photothermal and thermographic techniques: Best practices and lessons learned. J. Therm. Spray Technol. 2022, 31, 716–744.

[19]

Liu, Y. B.; Liu, J. H.; Yu, Y. H.; He, X.; Liu, L. Review of hot corrosion of thermal barrier coatings of gas turbine. Chin. J. Ship Res. 2017, 12, 107–115.

[20]

Luo, X. F.; Ning, Z. E.; Zhang, L.; Lin, R. S.; He, H.; Yang, J. J.; Yang, Y. Y.; Liao, J. L.; Liu, N. Influence of Al2O3 overlay on corrosion resistance of plasma sprayed yttria-stabilized zirconia coating in NaCl-KCl molten salt. Surf. Coat. Technol. 2019, 361, 432–437.

[21]

Sreedhar, G.; Raja, V. S. Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4-10 wt.% NaCl melt. Corros. Sci. 2010, 52, 2592–2602.

[22]

Sheng, X. X.; Liu, Y.; Wang, Y.; Li, Y. F.; Wang, X.; Wang, X. P.; Dai, Z. H.; Bao, J. C.; Xu, X. X. Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions. Adv. Mater. 2017, 29, 1700150.

[23]

Li, D. Y.; Xu, W.; Zhou, D. L.; Ma, X.; Chen, X.; Pan, G. C.; Zhu, J. Y.; Ji, Y. N.; Ding, N.; Song, H. W. Cesium tin halide perovskite quantum dots as an organic photoluminescence probe for lead ion. J. Lumin. 2019, 216, 116711.

[24]

Huang, S. Y.; Guo, M. L.; Tan, J. A.; Geng, Y. Y.; Wu, J. Y.; Tang, Y. W.; Su, C.; Lin, C. C.; Liang, Y. Novel fluorescence sensor based on all-inorganic perovskite quantum dots coated with molecularly imprinted polymers for highly selective and sensitive detection of omethoate. ACS Appl. Mater. Interfaces 2018, 10, 39056–39063.

[25]

Tan, L.; Guo, M. L.; Tan, J. A.; Geng, Y. Y.; Huang, S. Y.; Tang, Y. W.; Su, C.; Lin, C. C.; Liang, Y. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sensor. Actuat. B Chem. 2019, 291, 226–234.

[26]

Dong, Y. H.; Tang, X. Q.; Zhang, Z. W.; Song, J. Z.; Niu, T. C.; Shan, D.; Zeng, H. B. Perovskite nanocrystal fluorescence-linked immunosorbent assay methodology for sensitive point-of-care biological test. Matter 2020, 3, 273–286.

[27]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[28]

Sadhanala, A.; Ahmad, S.; Zhao, B. D.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L. Z.; Gödel, K. C.; Bein, T.; Docampo, P. et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 2015, 15, 6095–6101.

[29]

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 2018, 12, 681–687.

[30]

Abdel-Latif, K.; Epps, R. W.; Kerr, C. B.; Papa, C. M.; Castellano, F. N.; Abolhasani, M. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater. 2019, 29, 1900712.

[31]

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

[32]

Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbahi, B. A.; Aldwayyan, A. S. Tuning of amplified spontaneous emission wavelength for green and blue light emission through the tunable composition of CsPb(Br1− x Cl x )3 inorganic perovskite quantum dots. J. Phys. Chem. C 2021, 125, 9441–9452.

[33]

Park, Y. R.; Kim, H. H.; Eom, S.; Choi, W. K.; Choi, H.; Lee, B. R.; Kang, Y. Luminance efficiency roll-off mechanism in CsPbBr3− x Cl x mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619.

[34]

Cheng, M.; Li, G. P.; Li, H.; Xu, E. Z.; Li, D. T.; Wang, H.; Wu, F. Y.; Zhong, H. H.; Jiang, Y. Full visible waveband tunable formamidinium halides hybrid perovskite QDs via anion-exchange route and their high luminous efficiency LEDs. J. Alloys Compd. 2019, 791, 814–821.

[35]

Yang, Y. Q.; Wu, J. H.; Wang, X. B.; Guo, Q. Y.; Liu, X. P.; Sun, W. H.; Wei, Y. L.; Huang, Y. F.; Lan, Z.; Huang, M. L. et al. Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 2020, 32, 1904347.

[36]

Wang, W. R.; Zhang, M.; Pan, Z. X.; Biesold, G. M.; Liang, S.; Rao, H. S.; Lin, Z. Q.; Zhong, X. H. Colloidal inorganic ligand-capped nanocrystals: Fundamentals, status, and insights into advanced functional nanodevices. Chem. Rev. 2022, 122, 4091–4162.

[37]

Zhang, M. Q.; Bi, C. H.; Xia, Y. X.; Sun, X. J.; Wang, X. Y.; Liu, A. Q.; Tian, S. Y.; Liu, X. F.; De Leeuw, N. H.; Tian, J. J. Water-driven synthesis of deep-blue perovskite colloidal quantum wells for electroluminescent devices. Angew. Chem., Int. Ed. 2023, 62, e202300149.

[38]

Freed, B. K.; Biesecker, J.; Middleton, W. J. Spectral polarity index: A new method for determining the relative polarity of solvents. J. Fluorine Chem. 1990, 48, 63–75.

[39]

Hou, D. S.; Yang, Q. R.; Wang, P.; Wang, M. H.; Zhang, Y.; Wang, X. P.; Zhang, J. R. Concentration-induced wettability alteration of nanoscale NaCl solution droplets on the CSH surface. Phys. Chem. Chem. Phys. 2021, 23, 7449–7461.

[40]

Sghaier, N.; Prat, M.; Ben Nasrallah, S. On the influence of sodium chloride concentration on equilibrium contact angle. Chem. Eng. J. 2006, 122, 47–53.

[41]

Zhang, X. F.; Deng, Z. Q.; Li, H.; Mao, J.; Deng, C. M.; Deng, C. G.; Niu, S. P.; Chen, W. L.; Song, J. B.; Fan, J. F. et al. Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines. npj Mater. Degrad. 2020, 4, 31.

[42]

Chen, X. L.; Sun, Y. W.; Chen, D. X.; Li, J.; Li, W.; Zeng, D. H.; Wu, D. L.; Zou, B. L.; Cao, X. Q. A Comparative investigation on the corrosion degradation of plasma sprayed YSZ and LnMgAl11O19 (Ln = Nd, Sm, Gd) coatings exposed to the molten V2O5+Na2SO4 salt mixture at 1100 °C. J. Eur. Ceram. Soc. 2019, 39, 3778–3787.

[43]

Shi, J. Q.; Zhang, T. B.; Sun, B.; Wang, B.; Zhang, X. H.; Song, L. Isothermal oxidation and TGO growth behavior of NiCoCrAlY-YSZ thermal barrier coatings on a Ni-based superalloy. J. Alloys Compd. 2020, 844, 156093.

[44]

Li, Y. J.; Xie, Y. T.; Huang, L. P.; Liu, X. Y.; Zheng, X. B. Effect of physical vapor deposited Al2O3 film on TGO growth in YSZ/CoNiCrAlY coatings. Ceram. Int. 2012, 38, 5113–5121.

[45]
Yu, Z. Y.; Wei, L. L.; Guo, X. Y.; Zhang, B. P.; He, Q.; Guo, H. B. Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits. Rare Met., in press, https://doi.org/10.1007/s12598-018-1128-5.
DOI
[46]

Zhang, X. F.; Zhuo, X. S.; Fan, Z. J.; Mao, J.; Deng, C. M.; Deng, C. G.; Mei, X. S.; Cui, J. L.; Zhou, K. S.; Liu, M. Al2O3-modified 7YSZ thermal barrier coatings for protection against volcanic ash corrosion. npj Mater. Degrad. 2022, 6, 89.

Video
12274_2023_6355_MOESM2_ESM.mp4
12274_2023_6355_MOESM3_ESM.mp4
File
12274_2023_6355_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2023
Revised: 12 November 2023
Accepted: 21 November 2023
Published: 12 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

T. H. acknowleges support form the Science and Technology Innovation Program of Hunan Province (No. 2022RC1098), the Hunan Provincial Natural Science Foundation of China (Nos. 2023JJ30563 and 2019JJ50565), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 22A0580 and 18A461), the Scientific Research Start-up Fund for High-level Talents in Xiangnan University. The work of X. F. Z. is supported by the National Natural Science Foundation of China (Nos. 51801034 and 52172067), the Natural Science Foundation of Guangdong Province (Nos. 2021B1515020038 and 2020B1515020036), and the Guangdong Special Support Program (No. 2019BT02C629). The work of S. F. D. is supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 19C1706) and the Scientific Research Fund of Chenzhou (No. zdyf201907).

Return