Journal Home > Volume 17 , Issue 5

Triboelectric nanogenerator (TENG) has a promising future in the field of energy harvesting and self-powered sensing due to their simplicity in structure, low cost, and efficient energy harvesting from the surrounding environment. The output electrical performance of TENG can be improved by doping the friction material with functional materials and modifying the surface of the friction material. However, the current method of adding functional materials to friction materials is costly and wasteful, and the method of modifying the surface structure of friction materials is cumbersome and not easy to operate. In this work, we present a polydimethylsiloxane (PDMS)-MXene/gelatin triboelectric nanogenerator (PMMG-TENG) based on petal surface-microstructures, which has the advantages of low cost, simple preparation, high output performance, and ecological friendliness. By doping 0.03 wt.% of MXene in PDMS, the output electrical performance of TENG can be significantly improved, with an output current increase of up to 139.7%. Four different petals are used as natural molds to prepare PMMG-TENG. The results show that PMMG-TENG with peony petal surface microstructure has the best electrical performance, and the output current increase of up to 228.17% compared with PMMG-TENG without structure. The PMMG-TENG with peony petal surface-microstructure exhibits excellent electrical performance, demonstrating a maximum open-circuit voltage of 417.39 V and a maximum short-circuit current of 12.01 μA at a size of 3 cm × 3 cm, and a maximum power density of 170 μW/cm2 at a load resistance of 107 Ω. The PMMG-TENG’s output performance after 10,000 cycles is consistent with the initial state, highlighting excellent output stability. The PMMG-TENG can easily light up at least 100 light emitting diodes (LEDs). (operating voltage 3V.) Gelatin film exhibits excellent degradation performance, with complete degradation time of only 150 s in water at a constant temperature of 75 °C. PMMG-TENG not only shows excellent performance in the field of energy harvesting, but also has a broad application prospect in the field of self-powered sensing. This work provides a simple, low cost, natural and green method to significantly improve the output electrical performance of TENG.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A highoutput PDMS-MXene/gelatin triboelectric nanogenerator with the petal surface-microstructure

Show Author's information Zekun Wang1Congcong Hao1,2( )Mingzhe Cai1Juan Cui1Yongqiu Zheng1Chenyang Xue1
Key Laboratory of Instrumentation Science & Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Triboelectric nanogenerator (TENG) has a promising future in the field of energy harvesting and self-powered sensing due to their simplicity in structure, low cost, and efficient energy harvesting from the surrounding environment. The output electrical performance of TENG can be improved by doping the friction material with functional materials and modifying the surface of the friction material. However, the current method of adding functional materials to friction materials is costly and wasteful, and the method of modifying the surface structure of friction materials is cumbersome and not easy to operate. In this work, we present a polydimethylsiloxane (PDMS)-MXene/gelatin triboelectric nanogenerator (PMMG-TENG) based on petal surface-microstructures, which has the advantages of low cost, simple preparation, high output performance, and ecological friendliness. By doping 0.03 wt.% of MXene in PDMS, the output electrical performance of TENG can be significantly improved, with an output current increase of up to 139.7%. Four different petals are used as natural molds to prepare PMMG-TENG. The results show that PMMG-TENG with peony petal surface microstructure has the best electrical performance, and the output current increase of up to 228.17% compared with PMMG-TENG without structure. The PMMG-TENG with peony petal surface-microstructure exhibits excellent electrical performance, demonstrating a maximum open-circuit voltage of 417.39 V and a maximum short-circuit current of 12.01 μA at a size of 3 cm × 3 cm, and a maximum power density of 170 μW/cm2 at a load resistance of 107 Ω. The PMMG-TENG’s output performance after 10,000 cycles is consistent with the initial state, highlighting excellent output stability. The PMMG-TENG can easily light up at least 100 light emitting diodes (LEDs). (operating voltage 3V.) Gelatin film exhibits excellent degradation performance, with complete degradation time of only 150 s in water at a constant temperature of 75 °C. PMMG-TENG not only shows excellent performance in the field of energy harvesting, but also has a broad application prospect in the field of self-powered sensing. This work provides a simple, low cost, natural and green method to significantly improve the output electrical performance of TENG.

Keywords: triboelectric nanogenerator (TENG), energy harvesting, MXene, gelatin, petal surface-microstructure

References(60)

[1]

Ma, Y. J.; Zhang, Y. C.; Cai, S. S.; Han, Z. Y.; Liu, X.; Wang, F. L.; Cao, Y.; Wang, Z. H.; Li, H. F.; Chen, Y. H. et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062.

[2]

Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.

[3]

Huynh, T. P.; Haick, H. Autonomous flexible sensors for health monitoring. Adv. Mater. 2018, 30, 1802337.

[4]

Wang, D. Y.; Wang, L. L.; Lou, Z.; Zheng, Y. Q.; Wang, K.; Zhao, L. J.; Han, W.; Jiang, K.; Shen, G. Z. Biomimetic, biocompatible and robust silk Fibroin–MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 2020, 78, 105252.

[5]

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

[6]

Yamamoto, Y.; Yamamoto, D.; Takada, M.; Naito, H.; Arie, T.; Akita, S.; Takei, K. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv. Healthc. Mater. 2017, 6, 1700495.

[7]

Takei, K.; Honda, W.; Harada, S.; Arie, T.; Akita, S. Toward flexible and wearable human–interactive health-monitoring devices. Adv. Healthc. Mater. 2015, 4, 487–500.

[8]

Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 2020, 32, 1901924.

[9]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[10]

Bai, S. M.; Cui, J.; Zheng, Y. Q.; Li, G.; Liu, T. S.; Liu, Y. B.; Hao, C. C.; Xue, C. Y. Electromagnetic-triboelectric energy harvester based on vibration-to-rotation conversion for human motion energy exploitation. Appl. Energy 2023, 329, 120292.

[11]

Bo, X. K.; Wang, L. Y.; Zhao, H.; Almardi, J. M.; Li, W. L.; Daoud, W. A. A stretchable solid ionic electrode-based triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensors. Small 2023, 19, 2303415.

[12]

Jiao, J. Y.; Liu, J. M.; Gu, L.; Cui, N. Y.; Qin, Y. Grounding strategy to promote the surface charge equilibrium and output performance of triboelectric nanogenerator. Nano Energy 2023, 110, 108310.

[13]

Shan, C. C.; Li, K. X.; Cheng, Y. T.; Hu, C. G. Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 2023, 15, 127.

[14]

Son, J. H.; Heo, D.; Yong, H.; Hur, J.; Song, M.; Choi, M.; Jung, H.; Kim, M. K.; Hong, J.; Lee, S. Enhancing the peak/RMS current output performance of a triboelectric nanogenerator by unidirectional charge-supplying flutter. Nano Energy 2023, 113, 108521.

[15]

Tan, X. Q.; Wang, S. T.; You, Z. Y.; Zheng, J. M.; Liu, Y. High performance porous triboelectric nanogenerator based on silk fibroin@MXene composite aerogel and PDMS sponge. ACS Mater. Lett. 2023, 5, 1929–1937.

[16]

Wang, F. Y.; Hou, L. W.; Gao, L. X.; Wu, P. F.; Zhou, M. T.; Chen, X.; Mu, X. J. High-performance triboelectric nanogenerator via photon-generated carriers for green low-carbon system. Nano Energy 2023, 108, 108206.

[17]

Chen, X.; Wang, F. Y.; Zhao, Y. J.; Wu, P. F.; Gao, L. X.; Ouyang, C.; Yang, Y.; Mu, X. J. Surface plasmon effect dominated high-performance triboelectric nanogenerator for traditional Chinese medicine acupuncture. Research 2022, 2022, 9765634.

[18]

Liu, T. S.; Cui, J.; Zheng, Y. Q.; Bai, S. M.; Hao, C. C.; Xue, C. Y. A self-powered inert-gas sensor based on gas ionization driven by a triboelectric nanogenerator. Nano Energy 2023, 106, 108083.

[19]

Meena, J. S.; Khanh, T. D.; Jung, S. B.; Kim, J. W. Self-repairing and energy-harvesting triboelectric sensor for tracking limb motion and identifying breathing patterns. ACS Appl. Mater. Interfaces 2023, 15, 29486–29498.

[20]

Wang, D. Y.; Zhang, D. Z.; Chen, X. Y.; Zhang, H.; Tang, M. C.; Wang, J. H. Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy 2022, 102, 107711.

[21]

Wang, D. Y.; Zhang, D. Z.; Tang, M. C.; Zhang, H.; Sun, T. H.; Yang, C. Q.; Mao, R. Y.; Li, K. S.; Wang, J. H. Ethylene chlorotrifluoroethylene/hydrogel-based liquid–solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy 2022, 100, 107509.

[22]

Zhang, S. C.; Xiao, Y.; Chen, H. M.; Zhang, Y. L.; Liu, H. Y.; Qu, C. M.; Shao, H. X.; Xu, Y. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human–machine interaction. ACS Appl. Mater. Interfaces 2023, 15, 13802–13812.

[23]

Wang, F. Y.; Zhou, M. T.; Wu, P. F.; Gao, L. X.; Chen, X.; Mu, X. J. Self-powered transformer intelligent wireless temperature monitoring system based on an ultra-low acceleration piezoelectric vibration energy harvester. Nano Energy 2023, 114, 108662.

[24]

Wu, P. F.; Wang, F. Y.; Xu, S. W.; Liu, T.; Qi, Y. C.; Zhao, X.; Zhang, C.; Mu, X. J. A highly sensitive triboelectric quasi-zero stiffness vibration sensor with ultrawide frequency response. Adv. Sci. 2023, 10, 2301199.

[25]

Appamato, I.; Bunriw, W.; Harnchana, V.; Siriwong, C.; Mongkolthanaruk, W.; Thongbai, P.; Chanthad, C.; Chompoosor, A.; Ruangchai, S.; Prada, T. et al. Engineering triboelectric charge in natural rubber-Ag nanocomposite for enhancing electrical output of a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2023, 15, 973–983.

[26]

He, J. M.; Xue, Y. Y.; Sun, W. C.; Shen, L.; Zhao, Y.; Yan, J. F.; Wu, Y. X.; Zhang, B.; Qu, M. N. High-performance flexible triboelectric nanogenerator based on environmentally friendly, low-cost sodium carboxymethylcellulose for energy harvesting and self-powered sensing. ACS Appl. Electron. Mater. 2023, 5, 291–301.

[27]

Jin, Z. H.; Zhao, F. J. Z.; Lei, Y. L.; Wang, Y. C. Hydrogel-based triboelectric devices for energy-harvesting and wearable sensing applications. Nano Energy 2022, 95, 106988.

[28]

Joo, H.; Gwak, S.; Lee, M. H.; Park, H.; Lee, C.; Lee, J. H.; Han, S. A.; Lee, J. H. Functionalized thermoplastic polyurethane with tunable tribopolarity and biodegradability for high performance and biodegradable triboelectric nanogenerator. Sustain. Mater. Technol. 2023, 36, e00638.

[29]

Shi, X.; Chen, P. F.; Han, K.; Li, C. Y.; Zhang, R. Y.; Luo, J. J.; Wang, Z. L. A strong, biodegradable, and recyclable all-lignocellulose fabricated triboelectric nanogenerator for self-powered disposable medical monitoring. J. Mater. Chem. A 2023, 11, 11730–11739.

[30]

Yang, M. Y.; Tian, X.; Hua, T. Green and recyclable cellulose based TENG for sustainable energy and human–machine interactive system. Chem. Eng. J. 2022, 442, 136150.

[31]

Saqib, Q. M.; Shaukat, R. A.; Chougale, M. Y.; Khan, M. U.; Kim, J.; Bae, J. Particle triboelectric nanogenerator (P-TENG). Nano Energy 2022, 100, 107475.

[32]

Sun, Q. Z.; Wang, L.; Yue, X. P.; Zhang, L. R.; Ren, G. Z.; Li, D. H.; Wang, H. C.; Han, Y. J.; Xiao, L. L.; Lu, G. et al. Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human–machine interaction. Nano Energy 2021, 89, 106329.

[33]

Liu, C. L.; Jiang, L.; Yue, O. Y.; Feng, Y. F.; Zeng, B. X.; Wu, Y. X.; Wang, Y. F.; Wang, J. Y.; Zhao, L. Y.; Wang, X. M. et al. Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv. Compos. Hybrid Mater. 2023, 6, 112.

[34]

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

[35]

Zhang, D. Z.; Yang, Y.; Xu, Z. Y.; Wang, D. Y.; Du, C. An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo2O4 nanosphere ammonia gas sensor. J. Mater. Chem. A 2022, 10, 10935–10949.

[36]

Hu, S. M.; Han, J.; Shi, Z. J.; Chen, K.; Xu, N.; Wang, Y. F.; Zheng, R. Z.; Tao, Y. Z.; Sun, Q. J.; Wang, Z. L. et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett. 2022, 14, 115.

[37]

Luo, C.; Ma, H. Z.; Yu, H.; Zhang, Y. H.; Shao, Y.; Yin, B.; Ke, K.; Zhou, L.; Zhang, K.; Yang, M. B. Enhanced triboelectric nanogenerator based on a hybrid cellulose aerogel for energy harvesting and self-powered sensing. ACS Sustain. Chem. Eng. 2023, 11, 9424–9432.

[38]

Rani, G. M.; Wu, C. M.; Motora, K. G.; Umapathi, R.; Jose, C. R. M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 2023, 108, 108211.

[39]

Zhang, P.; Ma, Y. T.; Zhang, H. H.; Deng, L. High-performance triboelectric nanogenerators based on foaming agent-modified porous PDMS films with multiple pore sizes. ACS Appl. Energy Mater. 2023, 6, 6598–6606.

[40]

He, D.; Zhang, X. Z.; Yang, Q.; Atashbar, M. Z. Physically doped and printed elastomer films as flexible high-performance triboelectric nanogenerator for self-powered mechanoelectric sensor for recovering voice and monitoring heart rate. Chem. Eng. J. 2023, 456, 141012.

[41]

Yang, J. H.; Cao, J. Q.; Han, J.; Xiong, Y.; Luo, L.; Dan, X. Z.; Yang, Y. J.; Li, L. L.; Sun, J.; Sun, Q. J. Stretchable multifunctional self-powered systems with Cu-EGaIn liquid metal electrodes. Nano Energy 2022, 101, 107582.

[42]

Kim, K. N.; Kim, S. Y.; Choi, S. H.; Lee, M.; Song, W.; Lim, J.; Lee, S. S.; Myung, S. All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers based on MXene nanoflakes. Adv. Elect. Mater. 2022, 8, 2200819.

[43]

Sardana, S.; Saddi, R.; Mahajan, A. MXene-functionalized KNN dielectric nanofillers incorporated in PVA nanofibers for high-performance triboelectric nanogenerator. Appl. Phys. Lett. 2023, 122, 162902.

[44]

Xu, H. Y.; Tao, J.; Liu, Y.; Mo, Y. P.; Bao, R. R.; Pan, C. F. Fully fibrous large-area tailorable triboelectric nanogenerator based on solution blow spinning technology for energy harvesting and self-powered sensing. Small 2022, 18, 2202477.

[45]

Yang, L.; Liu, C. S.; Yuan, W. J.; Meng, C. Z.; Dutta, A.; Chen, X.; Guo, L. G.; Niu, G. Y.; Cheng, H. Y. Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 2022, 103, 107807.

[46]

Kim, M.; Lee, S.; Cao, V. A.; Kim, M. C.; Nah, J. Performance enhancement of triboelectric nanogenerators via photo-generated carriers using a polymer-perovskite composite. Nano Energy 2023, 112, 108474.

[47]

Lee, Y. S.; Jeon, S.; Kim, D.; Lee, D. M.; Kim, D.; Kim, S. W. High performance direct current-generating triboelectric nanogenerators based on tribovoltaic p-n junction with ChCl-passivated CsFAMA perovskite. Nano Energy 2023, 106, 108066.

[48]

Wang, J.; Wu, H. Y.; Fu, S. K.; Li, G.; Shan, C. C.; He, W. C.; Hu, C. G. Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy 2022, 104, 107916.

[49]

Jin, L.; Li, Z. Y.; Huang, H. C.; Chu, X.; Deng, W. L.; Zhang, J. L.; Ao, Y.; Xu, T. P.; Tian, G.; Yang, T. et al. Surface triboelectrification of MXenes with fluorine groups for flexible energy harvesting and sensing. Adv. Eng. Mater. 2023, 25, 2300709.

[50]

Jing, T. T.; Wang, S. C.; Yuan, H. Y.; Yang, Y. J.; Xue, M.; Xu, B. G. Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small 2023, 19, 2206528.

[51]

Kurakula, A.; Graham, S. A.; Paranjape, M. V.; Yu, J. S. Triboelectric film with electrochemical surface modification for multiple mechanical energy harvesting with high storage efficiency and sensing applications. ACS Appl. Electron. Mater. 2023, 5, 2073–2081.

[52]

Shi, X. W.; Wei, Y. W.; Yan, R.; Hu, L. X.; Zhi, J. C.; Tang, B.; Li, Y. J.; Yao, Z. Q.; Shi, C. Q.; Yu, H. D. et al. Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator. Nano Energy 2023, 109, 108231.

[53]

Zhang, Z.; Zhang, Q. L.; Xia, Z. Y.; Wang, J.; Yao, H.; Shen, Q. H.; Yang, H. A humidity- and environment-resisted high-performance triboelectric nanogenerator with superhydrophobic interface for energy harvesting and sensing. Nano Energy 2023, 109, 108300.

[54]

Feng, Y. G.; Zhang, L. Q.; Zheng, Y. B.; Wang, D. A.; Zhou, F.; Liu, W. M. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260–268.

[55]

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 2012, 12, 3109–3114.

[56]

Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.

[57]

Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: Materials and techniques. Chem. Soc. Rev. 2016, 45, 5455–5473.

[58]
Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014 , 26, 5851–5856.
[59]

Roy, S.; Ko, H. U.; Maji, P. K.; Van Hai, L.; Kim, J. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 2020, 385, 123723.

[60]

Li, T.; Pan, P.; Yang, Z. C.; Yang, X. P. Research on PDMS TENG of laser etch 3D structure. J. Mater. Sci. 2022, 57, 6723–6733.

File
12274_2023_6352_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 October 2023
Revised: 13 November 2023
Accepted: 20 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Innovative Research Group Project of National Natural Science Foundation of China (No. 51821003), the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (No. KFJJ202104), and the Natural Science Foundation for Young Scientists of Shanxi Province (No. 202203021212127).

Return