Journal Home > Volume 17 , Issue 3

Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption (EMWA) performances over wide temperature range. However, it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature. Here, we propose a flexible regulation engineering of titanium nitride (TiN) nanofibrous membranes (NMs, TNMs), which could be distributed uniformly in the polydimethylsiloxane (PDMS) matrix and contributed to the formation of abundant local conductive networks, generating the local conductive loss and enhancing the loss ability of EMWs. Moreover, when the TNMs are used as functional units and dispersed in the matrix, the corresponding composites exhibit an outstanding anti-reflection effect on microwaves. As hoped, under the precondition of good impedance matching, local conductive loss and polarization loss together improve the loss capacity at room temperature, and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature. Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering, the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K. This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection, but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum

Show Author's information Cuiping Li1,2,§Lu Zhang1,2,§Shuai Zhang2Qiqi Yu1,2Dan Li1,2Lei Zhang1Chunhong Gong1,2( )Jingwei Zhang2
Institute of Functional Polymer Composites, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China

§ Cuiping Li and Lu Zhang contributed equally to this work.

Abstract

Simultaneous development of well impedance matching and strong loss capability has become a mainstream method for achieving outstanding electromagnetic microwave absorption (EMWA) performances over wide temperature range. However, it is difficult to pursue both due to the mutual restraint of relationship between impedance matching and loss capability about temperature. Here, we propose a flexible regulation engineering of titanium nitride (TiN) nanofibrous membranes (NMs, TNMs), which could be distributed uniformly in the polydimethylsiloxane (PDMS) matrix and contributed to the formation of abundant local conductive networks, generating the local conductive loss and enhancing the loss ability of EMWs. Moreover, when the TNMs are used as functional units and dispersed in the matrix, the corresponding composites exhibit an outstanding anti-reflection effect on microwaves. As hoped, under the precondition of good impedance matching, local conductive loss and polarization loss together improve the loss capacity at room temperature, and polarization loss can compensate the local conductive loss to acquire effective dielectric response at elevated temperature. Benefiting from the reasonably synergistic loss ability caused by flexible regulation engineering, the corresponding composites exhibit the perfect EMWA performances in a wide temperature range from 298 to 573 K. This work not only elaborates the ponderable insights of independent membrane in the composition-structure-function connection, but also provides a feasible tactic for resolving coexistence of well impedance matching and strong loss capability issues in wide temperature spectrum.

Keywords: dielectric loss, electromagnetic microwave absorption, flexible titanium nitride nanofibrous membranes, local conductive loss, wide temperature spectrum

References(67)

[1]

Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; Xia, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

[2]

Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; Jing, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

[3]
Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, DOI: 10.1007/s12274-023-6090-3.
DOI
[4]

Zhao, J.; Li, M.; Gao, X. G. Construction of SnO2 nanoparticle cluster@PANI core–shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 2022, 915, 165439.

[5]

Jiang, Z. Y.; Si, H. X.; Li, Y.; Li, D.; Chen, H. H.; Gong, C. H.; Zhang, J. W. Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 2022, 15, 8546–8554.

[6]

Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

[7]

Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C. 2015, 3, 10017–10022.

[8]

Yuan, X. Y.; Cheng, L. F.; Guo, S. W.; Zhang, L. T. High-temperature microwave absorbing properties of ordered mesoporous inter-filled SiC/SiO2 composites. Ceram. Int. 2017, 43, 282–288.

[9]

Lan, X. L.; Wang, Z. J. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces. Carbon 2020, 170, 517–526.

[10]

Hou, Z. X.; Yin, X. W.; Xu, H. L.; Wei, H. J.; Li, M. H.; Cheng, L. F.; Zhang, L. T. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 2019, 11, 5364–5372.

[11]

Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.

[12]

Gong, C. H.; Zhang, J. W.; Yan, C.; Cheng, X. Q.; Zhang, J. W.; Yu, L. G.; Jin, Z. S.; Zhang, Z. J. Synthesis and microwave electromagnetic properties of nanosized titanium Nitride. J. Mater. Chem. 2012, 22, 3370–3376.

[13]

Shi, Y. P.; Li, D.; Si, H. X.; Duan, Y. P.; Gong, C. H.; Zhang, J. W. TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 2022, 918, 165603.

[14]

Shi, Y. P.; Li, D.; Wei, Y.; Gong, C. H.; Zhang, J. W. Magnetic TiN composites for efficient microwave absorption: Nanoribbons vs. nanoparticles. Compos. Commun. 2021, 28, 100919.

[15]

Wei, Y.; Shi, Y. P.; Zhang, X. F.; Jiang, Z. Y.; Zhang, Y. H.; Zhang, L.; Zhang, J. W.; Gong, C. H. Electrospinning of lightweight TiN fibers with superior microwave absorption. J. Mater. Sci.: Mater. Electron. 2019, 30, 14519–14527.

[16]

Zhu, B.; Cui, Y.; Lv, D. F.; Xu, K. Z.; Chen, Y. J.; Wei, Y. N.; Wei, H. Y.; Bu, J. L. Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Surf. Sci. 2020, 533, 147439.

[17]

Li, C. P.; Li, D.; Zhang, L.; Zhang, Y. H.; Zhang, L.; Gong, C. H.; Zhang, J. W. Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 2023, 16, 3570–3579.

[18]

Song, J.; Wang, X. Q.; Yan, J. H.; Yu, J. Y.; Sun, G.; Ding, B. Soft Zr-doped TiO2 nanofibrous membranes with enhanced photocatalytic activity for water purification. Sci. Rep. 2017, 7, 1636.

[19]

Xu, Z.; Liu, H. L.; Wu, F.; Cheng, L. D.; Yu, J. Y.; Liu, Y. T.; Ding, B. Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700 °C. Adv. Mater. 2023, 35, 2305336.

[20]

Chen, S.; Chen, Y. H.; Zhao, Y.; Zhang, L.; Zhu, C.; Zhang, Y. Y.; Liu, S. J.; Xia, S. H.; Yu, J. Y.; Ding, B. et al. Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials. Mater. Today 2022, 61, 139–168.

[21]

Liu, H. L.; Qiang, S. Y.; Wu, F.; Zhu, X. D.; Liu, X. Y.; Yu, J. Y.; Liu, Y. T.; Ding, B. Scalable synthesis of flexible single-atom monolithic catalysts for high-efficiency, durable CO oxidation at low temperature. ACS Nano 2023, 17, 19431–19440.

[22]

Zhou, C. J.; Chu, R.; Wu, R.; Wu, Q. L. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 2011, 12, 2617–2625.

[23]

Gong, C. H.; Yan, C.; Zhang, J. W.; Cheng, X. Q.; Pan, H. S.; Zhang, C. H.; Yu, L. G.; Zhang, Z. J. Room-temperature ferromagnetism evolution in nanostructured titanium nitride superconductors-the influence of structural defects. J. Mater. Chem. 2011, 21, 15273–15278.

[24]

Gao, X.; Li, M. Y.; Zhou, F.; Wang, X. Q.; Chen, S. J.; Yu, J. Y. Flexible zirconium doped strontium titanate nanofibrous membranes with enhanced visible-light photocatalytic performance and antibacterial activities. J. Colloid Interface Sci. 2021, 600, 127–137.

[25]

Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

[26]

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2T x MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

[27]

Tian, Y. R.; Zhi, D. D.; Li, T.; Li, J. Z.; Li, J. T.; Xu, Z. K.; Kang, W.; Meng, F. B. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

[28]

Gao, Z. G.; Lan, D.; Zhang, L. M.; Wu, H. J. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2106677.

[29]

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

[30]

Fan, G. H.; Wang, Z. Y.; Ren, H.; Liu, Y.; Fan, R. H. Dielectric dispersion of copper/rutile cermets: Dielectric resonance, relaxation, and plasma oscillation. Scr. Mater. 2021, 190, 1–6.

[31]

Fan, G. H.; Wang, Z. Y.; Sun, K.; Liu, Y.; Fan, R. H. Doped ceramics of indium oxides for negative permittivity materials in MHz–kHz frequency regions. J. Mater. Sci. Technol. 2021, 61, 125–131.

[32]

Xie, P. T.; Zhang, Z. D.; Liu, K. P.; Qian, L.; Dang, F.; Liu, Y.; Fan, R. H.; Wang, X. L.; Dou, S. X. C/SiO2 meta-composite: Overcoming the λ/ a relationship limitation in metamaterials. Carbon 2017, 125, 1–8

[33]

Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

[34]

Song, Q.; Ye, F.; Kong, L.; Shen, Q. L.; Han, L. Y.; Feng, L.; Yu, G. J.; Pan, Y. A. N.; Li, H. J. Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 2020, 30, 2000475.

[35]

He, P.; Cao, M. S.; Shu, J. C.; Cai, Y. Z.; Wang, X. X.; Zhao, Q. L.; Yuan, J. Atomic layer tailoring Titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical Energy. ACS Appl. Mater. Interfaces 2019, 11, 12535–12543.

[36]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling Nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

[37]

Shi, Y. N.; Xu, S. J.; Du, J.; Qiu, J. Strain-responsive 3D hierarchical composites for smart microwave absorption modulation within broad C-Ku band. Mater. Today Phys. 2022, 27, 100823.

[38]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[39]

Wang, X. H.; Qin, J.; Cui, J.; Huang, L.; Yuan, Y.; Li, Y. B. Reduced graphene oxide/carbon nanofiber based composite fabrics with spider web-like structure for microwave absorbing applications. Adv. Fiber Mater. 2022, 4, 1164–1176.

[40]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[41]

Zhou, Q.; Yin, X. W.; Ye, F.; Tang, Z. M.; Mo, R.; Cheng, L. F. High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceram. Int. 2019, 45, 6514–6522.

[42]

Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

[43]

Wang, G.; Li, C. F.; Estevez, D.; Xu, P.; Peng, M. Y.; Wei, H. J.; Qin, F. X. Boosting interfacial polarization through heterointerface engineering in MXene/graphene intercalated-based microspheres for electromagnetic wave absorption. Nano-Micro Lett. 2023, 15, 152.

[44]

Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962.

[45]

Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101–6109.

[46]

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

[47]

Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

[48]

Liu, Y. H.; Huang, X. X.; Yan, X.; Xia, L.; Zhang, T.; Sun, J. H.; Liu, Y. N.; Zhou, Y. Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 2023, 12, 329–340.

[49]

Zhang, Z. D.; Li, Z. H.; Zhao, Y. H.; Bi, X. R.; Zhang, Z. Y.; Long, Z. K.; Liu, Z. X.; Zhang, L. J.; Cai, W. J.; Liu, Y. et al. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv. Compos. Hybrid Mater. 2022, 5, 3176–3189.

[50]

Wang, X.; Shu, J. C.; He, X. M.; Zhang, M.; Wang, X. X.; Gao, C.; Yuan, J.; Cao, M. S. Green approach to conductive PEDOT:PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 2018, 6, 14017–14025.

[51]

Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

[52]

Liu, Y. H.; Huang, X. X.; Yan, X.; Zhang, T.; Sun, J. H.; Liu, Y. N. Performance optimization engineering of multicomponent absorbing materials based on machine learning. ACS Appl. Mater. Interfaces 2023, 15, 27056–27064.

[53]

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

[54]

Zhang, Y. H.; Meng, H. J.; Shi, Y. P.; Zhang, X. F.; Liu, C. X.; Wang, Y.; Gong, C. H.; Zhang, J. W. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Part B: Eng. 2020, 193, 108028.

[55]

Zhang, Y. H.; Si, H. X.; Liu, H. J.; Jiang, Z. Y.; Li, A. B.; Liu, M. J.; Gong, C. H. Heterogeneous and hierarchical Ni/C/SiO2 composite with tunable electromagnetic wave absorption. Mater. Today Phys. 2023, 36, 101149.

[56]

Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, 10, 2303104.

[57]

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B: Eng. 2021, 222, 109067.

[58]

Liang, Q. Q.; Wang, L.; Qi, X. S.; Peng, Q.; Gong, X.; Chen, Y. L.; Xie, R.; Zhong, W. Hierarchical engineering of CoNi@Air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 2023, 147, 37–46.

[59]

Jia, T. M.; Qi, X. S.; Wang, L.; Yang, J. L.; Gong, X.; Chen, Y. L.; Qu, Y. P.; Peng, Q.; Zhong, W. Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption. Carbon 2023, 206, 364–374.

[60]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

[61]

Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

[62]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[63]

Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

[64]

Gu, H. L.; Huang, J.; Li, N.; Yang, H.; Chen, G.; Dong, C. J.; Gong, C. H.; Guan, H. T. Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 2023, 146, 145–153

[65]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146

[66]

Wang, C. X.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation. J. Mater. Sci. Technol. 2022, 108, 236–243.

[67]

Xiang, L. L.; Qi, X. S.; Rao, Y. C.; Wang, L.; Gong, X.; Chen, Y. L.; Peng, Q.; Zhong, W. A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Mater. Today Phys. 2023, 34, 101030.

File
12274_2023_6350_MOESM1_ESM.pdf (724.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2023
Revised: 17 November 2023
Accepted: 18 November 2023
Published: 16 December 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Thanks for the financial support of the National Natural Science Foundation of China (Nos. 22305066 and U1704253).

Return