Journal Home > Volume 17 , Issue 5

The demand for lightweight, thin electromagnetic interference (EMI) shielding film materials with high shielding effectiveness (SE), excellent mechanical properties, and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products. Here, we developed an ultra-thin film (CNT@GC) in which the glassy carbon (GC) layer wrapped around and welded carbon nanotubes (CNTs) to form a core–shell network structure, leading to exceptional tensile strength (327.2 MPa) and electrical conductivity (2.87 × 105 S·m−1). The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2 μm after post-acid treatment and high specific SE of 3.49 × 105 dB·cm2·g−1, with comprehensive properties surpassing those of the majority of previous shielding materials. Additionally, the CNT@GC film exhibited Joule heating capability, reaching a surface temperature of 135 °C at 3 V with a fast thermal response of about 0.5 s, enabling anti-icing/de-icing functionality. This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability, demonstrating immense potential in wearable devices, defense, and aerospace applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-thin robust CNT@GC film integrating effective electromagnetic shielding and flexible Joule heating

Show Author's information Ding Zhang1Chunhui Wang2Meng Li1,3Weixue Meng1Shipeng Zhang1Mengdan Yang1Xinguang Huang1Yingjiu Zhang1Yuanyuan Shang1( )Anyuan Cao3
Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Electron Microscopy Center, Yunnan University, Kunming 650091, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China

Abstract

The demand for lightweight, thin electromagnetic interference (EMI) shielding film materials with high shielding effectiveness (SE), excellent mechanical properties, and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products. Here, we developed an ultra-thin film (CNT@GC) in which the glassy carbon (GC) layer wrapped around and welded carbon nanotubes (CNTs) to form a core–shell network structure, leading to exceptional tensile strength (327.2 MPa) and electrical conductivity (2.87 × 105 S·m−1). The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2 μm after post-acid treatment and high specific SE of 3.49 × 105 dB·cm2·g−1, with comprehensive properties surpassing those of the majority of previous shielding materials. Additionally, the CNT@GC film exhibited Joule heating capability, reaching a surface temperature of 135 °C at 3 V with a fast thermal response of about 0.5 s, enabling anti-icing/de-icing functionality. This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability, demonstrating immense potential in wearable devices, defense, and aerospace applications.

Keywords: core–shell structure, Joule heating, ultra-thin lightweight film, robust film, electromagnetic shielding

References(57)

[1]

Chang, J. L.; Zhai, H.; Hu, Z. R.; Li, J. S. Ultra-thin metal composites for electromagnetic interference shielding. Compos. Part B: Eng. 2022, 246, 110269.

[2]

Ma, Z. N.; Li, J. W.; Zhang, J. J.; He, A. N.; Dong, Y. Q.; Tan, G. G.; Ning, M. Q.; Man, Q. K.; Liu, X. C. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding. J. Mater. Sci. Technol. 2021, 81, 43–50.

[3]

Park, S.; Bang, J.; Kim, B. S.; Oh, S. J.; Choi, J. H. Metallic fusion of nanocrystal thin films for flexible and high-performance electromagnetic interference shielding materials. Mater. Today Adv. 2021, 12, 100177.

[4]

Verma, R.; Thakur, P.; Chauhan, A.; Jasrotia, R.; Thakur, A. A review on MXene and its’ composites for electromagnetic interference (EMI) shielding applications. Carbon 2023, 208, 170–190.

[5]

Nan, Z.; Wei, W.; Lin, Z. H.; Chang, J. J.; Hao, Y. Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 2023, 15, 172.

[6]

Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

[7]

Zhou, M.; Tan, S. J.; Wang, J. W.; Wu, Y.; Liang, L. L.; Ji, G. B. “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 2023, 15, 176

[8]

Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

[9]

Men, Q. Q.; Wang, S.; Yan, Z. K.; Zhao, B.; Guan, L.; Chen, G. Y.; Guo, X. Q.; Zhang, R.; Che, R. C. Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv. Compos. Hybrid Mater. 2022, 5, 2429–2439.

[10]

Liu, H. G.; Wu, S. Q.; You, C. Y.; Tian, N.; Li, Y.; Chopra, N. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 2021, 172, 569–596.

[11]

Shang, Y. Y.; He, X. D.; Li, Y. B.; Zhang, L. H.; Li, Z.; Ji, C. Y.; Shi, E. Z.; Li, P. X.; Zhu, K.; Peng, Q. Y. et al. Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 2012, 24, 2896–2900.

[12]

Shang, Y. Y.; Hua, C. F.; Xu, W. J.; Hu, X. Y.; Wang, Y.; Zhou, Y.; Zhang, Y. J.; Li, X. J.; Cao, A. Y. Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett. 2016, 16, 1768–1775.

[13]

Lu, S. W.; Shao, J. Y.; Ma, K. M.; Chen, D.; Wang, X. Q.; Zhang, L.; Meng, Q. S.; Ma, J. Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 2018, 136, 387–394.

[14]

Yang, F.; Ma, S. C.; Khor, C. M.; Su, Y. M.; Barani, Z.; Xu, Z. P.; Boyko, A.; Iddya, A.; Segev-Mark, N.; Zheng, X. Y. et al. One-step method for the fabrication of pure and metal-decorated densified CNT films for effective electromagnetic interference shielding. Carbon 2023, 214, 118370.

[15]

Zheng, X. H.; Cao, W. T.; Hong, X. H.; Zou, L. H.; Liu, Z.; Wang, P.; Li, C. L. Versatile electronic textile enabled by a mixed-dimensional assembly strategy. Small 2023, 19, 2208134.

[16]

Zheng, J. J.; Hang, T. Y.; Li, Z. H.; He, W. W.; Jiang, S. H.; Li, X. P.; Chen, Y. M.; Wu, Z. Y. High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting. Chem. Eng. J. 2023, 471, 144548.

[17]

Ma, X. F.; Pan, J. J.; Guo, H. T.; Wang, J. W.; Zhang, C. M.; Han, J. Q.; Lou, Z. C.; Ma, C. X.; Jiang, S. H.; Zhang, K. Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 2023, 33, 2213431.

[18]

Sun, Y.; Han, X.; Guo, P.; Chai, Z. Y.; Yue, J. Y.; Su, Y. T.; Tan, S. D.; Sun, X.; Jiang, L.; Heng, L. P. Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding. ACS Nano 2023, 17, 12616–12628.

[19]

Zhang, Y. H.; Wang, W.; Xie, J. W.; Dai, K.; Zhang, F.; Zheng, Q. B. Smart and flexible CNTs@MXene heterostructure-decorated cellulose films with excellent electrothermal/photothermal conversion and EMI shielding performances. Carbon 2022, 200, 491–499.

[20]

Li, B.; Yang, Y. F.; Wu, N.; Zhao, S. Y.; Jin, H.; Wang, G. L.; Li, X. Y.; Liu, W.; Liu, J. R.; Zeng, Z. H. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 2022, 16, 19293–19304.

[21]

Wan, Y. J.; Wang, X. Y.; Li, X. M.; Liao, S. Y.; Lin, Z. Q.; Hu, Y. G.; Zhao, T.; Zeng, X. L.; Li, C. H.; Yu, S. H. et al. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 2020, 14, 14134–14145.

[22]

Wang, H.; Sun, X.; Wang, Y. Z.; Li, K. C.; Wang, J.; Dai, X.; Chen, B.; Chong, D. T.; Zhang, L. Y.; Yan, J. J. Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 2023, 14, 380.

[23]

Zhang, D.; Villarreal, M. G.; Cabrera, E.; Benatar, A.; James Lee, L.; Castro, J. M. Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite. Compos. Part B: Eng. 2019, 159, 327–335.

[24]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

[25]

Zou, J. Y.; Zhang, X. H.; Xu, C.; Zhao, J. N.; Zhu, Y. T.; Li, Q. W. Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition. Carbon 2017, 121, 242–247.

[26]

Zhao, W. Q.; Li, Y. B.; Wang, S. S.; He, X. D.; Shang, Y. Y.; Peng, Q. Y.; Wang, C.; Du, S. Y.; Gui, X. C.; Yang, Y. B. et al. Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating. Carbon 2014, 76, 19–26.

[27]

Ye, Z. M.; Zhao, B.; Wang, Q.; Chen, K.; Su, M.; Xia, Z. Y.; Han, L.; Li, M.; Kong, X. B.; Shang, Y. Y. et al. Crack-induced superelastic, strength-tunable carbon nanotube sponges. Adv. Funct. Mater. 2023, 33, 2303475.

[28]

Wang, H.; Lu, W. B.; Di, J. T.; Li, D.; Zhang, X. H.; Li, M.; Zhang, Z. G.; Zheng, L. X.; Li, Q. W. Ultra-lightweight and highly adaptive all-carbon elastic conductors with stable electrical resistance. Adv. Funct. Mater. 2017, 27, 1606220.

[29]

Faraji, S.; Stano, K. L.; Yildiz, O.; Li, A.; Zhu, Y. T.; Bradford, P. D. Ultralight anisotropic foams from layered aligned carbon nanotube sheets. Nanoscale 2015, 7, 17038–17047.

[30]

Zhang, L. Y.; Feng, G. J.; Zhou, W. H.; Zhang, Y.; Wang, L.; Wang, L. H.; Liu, Z. Q.; Zhao, T. S.; Zhu, W. C.; Zhang, B. S. Core–shell sp3@sp2 nanocarbon for adsorption of anionic and cationic organic dyes: Effect of the graphitization of nanocarbon. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 651, 129694.

[31]

Weight, B. M.; Zheng, M.; Tretiak, S. Signatures of chemical dopants in simulated resonance Raman spectroscopy of carbon nanotubes. J. Phys. Chem. Lett. 2023, 14, 1182–1191.

[32]

Park, Y.; Hembram, K. P. S. S.; Yoo, R.; Jang, B.; Lee, W.; Lee, S. G.; Kim, J. G.; Kim, Y. I.; Moon, D. J.; Lee, J. K. et al. Reinterpretation of single-wall carbon nanotubes by Raman spectroscopy. J. Phys. Chem. C 2019, 123, 14003–14009.

[33]

Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102.

[34]

Logothetidis, S.; Charitidis, C.; Gioti, M.; Panayiotatos, Y.; Handrea, M.; Kautek, W. Comprehensive study on the properties of multilayered amorphous carbon films. Diamond Relat. Mater. 2000, 9, 756–760.

[35]

Simon, R. M. Emi shielding through conductive plastics. Polym. Plast. Technol. Eng. 1981, 17, 1–10.

[36]

Das, N. C.; Liu, Y. Y.; Yang, K. K.; Peng, W. Q.; Maiti, S.; Wang, H. Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 2009, 49, 1627–1634.

[37]

Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; Jin, L. Y.; Song, N.; Sun, S.; Ding, P. Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chem. Eng. J. 2023, 464, 142595.

[38]

Wang, X.; Shi, T. F.; Wan, C. L.; Zong, P. A.; Liu, Z. G.; Huang, W. Co-enhanced electromagnetic shielding and thermoelectric performance in Bi2Te3 coated carbon cloth. Carbon 2023, 213, 118298.

[39]

Wang, G.; Lai, D. G.; Xu, X. H.; Wang, Y. Lightweight, stiff and heat-resistant bamboo-derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding. Chem. Eng. J. 2022, 446, 136911.

[40]

Han, L. Y.; Li, K. Z.; Xiao, C. X.; Yin, X. M.; Gui, X. C.; Song, Q.; Ye, F. Carbon nanotube-vertical edge rich graphene hybrid sponge as multifunctional reinforcements for high performance epoxy composites. Carbon 2023, 201, 871–880.

[41]

Wang, Z.; Kong, Q. Q.; Yi, Z. L.; Xie, L. J.; Jia, H.; Chen, J. P.; Liu, D.; Jiang, D.; Chen, C. M. Electromagnetic interference shielding material for super-broadband: Multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 2021, 9, 25999–26009.

[42]

Cao, J.; Zhang, Z.; Dong, H. H.; Ding, Y. L.; Chen, R. H.; Liao, Y. P. Dry and binder-free deposition of single-walled carbon nanotubes on fabrics for thermal regulation and electromagnetic interference shielding. ACS Appl. Nano Mater. 2022, 5, 13373–13383.

[43]

Jia, F. F.; Dong, J. Y.; Dai, X. Y.; Liu, Y. Q.; Wang, H. R.; Lu, Z. Q. Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chem. Eng. J. 2023, 452, 139395.

[44]

Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2T x MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

[45]

Zhang, Y. N.; Xu, F. J.; Zhang, C. Y.; Wang, J. J.; Jia, Z. M.; Hui, D.; Qiu, Y. P. Tensile and interfacial properties of polyacrylonitrile-based carbon fiber after different cryogenic treated condition. Compos. Part B: Eng. 2016, 99, 358–365.

[46]

Tomita, Y.; Inoue, S.; Matsumura, Y. Transient behavior of carbon nanotube thin film for adsorption of polar and non-polar molecules. Chem. Phys. Lett. 2018, 691, 351–354.

[47]

Kokabu, T.; Takashima, K.; Inoue, S.; Matsumura, Y.; Yamamoto, T. Transport phenomena of electrons at the carbon nanotube interface with molecular adsorption. J. Appl. Phys. 2017, 122, 015308.

[48]

Han, B. S.; Guo, E. Y.; Xue, X.; Zhao, Z. Y.; Li, T. J.; Xu, Y. J.; Luo, L. S.; Hou, H. L. Enhancement of the twisted carbon nanotube fibers properties by drawing processing and acid treatment. Mater. Des. 2018, 143, 238–247.

[49]

Zhang, Q.; Li, K. W.; Fan, Q. X.; Xia, X. G.; Zhang, N.; Xiao, Z. J.; Zhou, W. B.; Yang, F.; Wang, Y. C.; Liu, H. P. et al. Performance improvement of continuous carbon nanotube fibers by acid treatment. Chin. Phys. B 2017, 26, 028802.

[50]

Peng, X. H.; Wong, S. S. Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 2009, 21, 625–642.

[51]

Morelos-Gómez, A.; Fujishige, M.; Magdalena Vega-Díaz, S.; Ito, I.; Fukuyo, T.; Cruz-Silva, R.; Tristán-López, F.; Fujisawa, K.; Fujimori, T.; Futamura, R. et al. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J. Mater. Chem. A 2016, 4, 74–82.

[52]

Ryu, Y.; Yin, L.; Yu, C. Dramatic electrical conductivity improvement of carbon nanotube networks by simultaneous de-bundling and hole-doping with chlorosulfonic acid. J. Mater. Chem. 2012, 22, 6959–6964.

[53]

Tang, X. W.; Luo, J. T.; Hu, Z. W.; Lu, S. J.; Liu, X. Y.; Li, S. S.; Zhao, X.; Zhang, Z. H.; Lan, Q. Q.; Ma, P. M. et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 2023, 16, 1755–1763.

[54]

Liang, S. Q.; Wang, H. C.; Tao, X. Effects of multiwalled carbon nanotubes and reduced graphene oxide of different proportions on the electrothermal properties of cationic cellulose nanofibril-based composites. J. Mater. Res. Technol. 2022, 17, 2388–2399.

[55]

Zhu, Y. S.; Ming, Y. K.; Sun, J. R.; Li, S. N.; Li, S.; Xiao, H.; Wang, B.; Duan, Y. G. Joule heating synthesis of carbon fiber/graphene 3D crosslinked structure for lightning strike protection and electromagnetic interference in aerospace composites. Chem. Eng. J. 2023, 474, 145583.

[56]

Chen, J. C.; Yuan, B. G.; Yang, D. Z.; Wu, Z. W.; Xu, H. J.; Huang, M.; Liu, C. T.; Shen, C. Y. The hierarchical layer with dynamic imine bonds on carbon fiber surface to simultaneously improve interface and electromagnetic shielding properties of carbon fiber reinforced thermoplastic composites. Compos. Sci. Technol. 2023, 240, 110081.

[57]

Zhang, Z. W.; Yuan, C. X.; Hu, W. B.; Wang, C. H. Dough-like aramid nanofiber putty-assisted design of free-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Adv. Eng. Mater. 2023, 25, 2300512.

Video
12274_2023_6349_MOESM2_ESM.mp4
File
12274_2023_6349_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2023
Revised: 04 November 2023
Accepted: 19 November 2023
Published: 14 February 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0210702), the National Natural Science Foundation of China (No. 51872267), the Natural Science Foundation of Henan Province, China (No. 202300410371), and Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HASTIT017). The authors thank the National Supercomputing Center in Zhengzhou and the Center of Advanced Analysis & Gene Sequencing of Zhengzhou University for their support.

Return