Journal Home > Volume 17 , Issue 5

Given its intriguing band structure and unique tunable bandgap, AB-stacked bilayer graphene has great potentials in the applications of high-end electronics, optoelectronics and semiconductors. The epitaxial growth of AB-stacked single-crystal bilayer graphene films requires a strict AB-stacked lattice, identical orientations and seamless stitching of bilayer graphene islands. However, the particles inevitably present on the metal surface that produced during high temperature growth would induce random orientations, twisted stacking islands, and uncontrollable multilayers, which is a great challenge to overcome. Here, we propose a heat-resisting-box assisted strategy to produce nearly pure AB-stacked bilayer graphene single-crystal films on Cu/Ni (111) foils. With our technique, the particles on the Cu/Ni (111) surface are effectively eliminated, which greatly minimizes the occurrence of randomly twisted islands and uncontrollable multilayers. The as-grown AB-stacked bilayer graphene films show > 99% alignment and > 99% AB stacking order. Our work provides a promising method towards the growth of pure AB-stacked bilayer graphene single crystals and would accelerate its device applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Towards growth of pure AB-stacked bilayer graphene single crystals

Show Author's information Xiaowen Zhang1,2,3,§Tao Zhou1,2,§Yunlong Ren1,2,§Zuo Feng4,§Ruixi Qiao5Qinghe Wang4Bin Wang1,2Jinxia Bai1,2Muhong Wu4,6,7Zhilie Tang1,2Xu Zhou1,2Kaihui Liu4,6,7Xiaozhi Xu1,2( )
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
Guangdong-Hong Kong Joint Laboratory of Quantum Matter, School of Physics, South China Normal University, Guangzhou 510006, China
Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955–6900, Saudi Arabia
State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210094, China
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan 523808, China

§ Xiaowen Zhang, Tao Zhou, Yunlong Ren, and Zuo Feng contributed equally to this work.

Abstract

Given its intriguing band structure and unique tunable bandgap, AB-stacked bilayer graphene has great potentials in the applications of high-end electronics, optoelectronics and semiconductors. The epitaxial growth of AB-stacked single-crystal bilayer graphene films requires a strict AB-stacked lattice, identical orientations and seamless stitching of bilayer graphene islands. However, the particles inevitably present on the metal surface that produced during high temperature growth would induce random orientations, twisted stacking islands, and uncontrollable multilayers, which is a great challenge to overcome. Here, we propose a heat-resisting-box assisted strategy to produce nearly pure AB-stacked bilayer graphene single-crystal films on Cu/Ni (111) foils. With our technique, the particles on the Cu/Ni (111) surface are effectively eliminated, which greatly minimizes the occurrence of randomly twisted islands and uncontrollable multilayers. The as-grown AB-stacked bilayer graphene films show > 99% alignment and > 99% AB stacking order. Our work provides a promising method towards the growth of pure AB-stacked bilayer graphene single crystals and would accelerate its device applications.

Keywords: bilayer graphene, AB stacking, uniform growth, heat-resisting box

References(42)

[1]

Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 2018, 118, 9281–9343.

[2]

Xia, F. N.; Farmer, D. B.; Lin, Y. M.; Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715–718.

[3]

Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; De Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2015, 10, 156–160.

[4]

Xu, X. Z.; Liu, C.; Sun, Z. H.; Cao, T.; Zhang, Z. H.; Wang, E. G.; Liu, Z. F.; Liu, K. H. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 2018, 47, 3059–3099.

[5]

Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775.

[6]

Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.

[7]

Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823.

[8]

Choi, S. M.; Jhi, S. H.; Son, Y. W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 2010, 10, 3486–3489.

[9]

Verberck, B.; Partoens, B.; Peeters, F. M.; Trauzettel, B. Strain-induced band gaps in bilayer graphene. Phys. Rev. B 2012, 85, 125403.

[10]

Zhang, W. J.; Lin, C. T.; Liu, K. K.; Tite, T.; Su, C. Y.; Chang, C. H.; Lee, Y. H.; Chu, C. W.; Wei, K. H.; Kuo, J. L. et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5, 7517–7524.

[11]

Mak, K. F.; Lui, C. H.; Shan, J.; Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 2009, 102, 256405.

[12]

Ju, L.; Shi, Z. W.; Nair, N.; Lv, Y. C.; Jin, C. H.; Velasco, J.; Ojeda-Aristizabal, C.; Bechtel, H. A.; Martin, M. C.; Zettl, A. et al. Topological valley transport at bilayer graphene domain walls. Nature 2015, 520, 650–655.

[13]

Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.; Rana, F.; Park, J.; Hone, J.; Wang, F. et al. Tunable excitons in bilayer graphene. Science 2017, 358, 907–910.

[14]

Yin, J. B.; Tan, C.; Barcons-Ruiz, D.; Torre, I.; Watanabe, K.; Taniguchi, T.; Song, J. C. W.; Hone, J.; Koppens, F. H. L. Tunable and giant valley-selective Hall effect in gapped bilayer graphene. Science 2022, 375, 1398–1402.

[15]

Li, J. I. A.; Tan, C.; Chen, S.; Zeng, Y.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R. Even-denominator fractional quantum Hall states in bilayer graphene. Science 2017, 358, 648–652.

[16]

Szafranek, B. N.; Schall, D.; Otto, M.; Neumaier, D.; Kurz, H. High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett. 2011, 11, 2640–2643.

[17]

Jung, M.; Rickhaus, P.; Zihlmann, S.; Makk, P.; Schönenberger, C. Microwave photodetection in an ultraclean suspended bilayer graphene p-n junction. Nano Lett. 2016, 16, 6988–6993.

[18]

Wu, S. F.; Mao, L.; Jones, A. M.; Yao, W.; Zhang, C. W.; Xu, X. D. Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Lett. 2012, 12, 2032–2036.

[19]

Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

[20]

Huang, M.; Bakharev, P. V.; Wang, Z. J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y. Q.; Qu, D. S. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(Ⅲ) foil. Nat. Nanotechnol. 2020, 15, 289–295.

[21]

Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

[22]

Liu, W.; Kraemer, S.; Sarkar, D.; Li, H.; Ajayan, P. M.; Banerjee, K. Controllable and rapid synthesis of high-quality and large-area bernal stacked bilayer graphene using chemical vapor deposition. Chem. Mater. 2014, 26, 907–915.

[23]

Gao, Z. L.; Zhang, Q. C.; Naylor, C. H.; Kim, Y.; Abidi, I. H.; Ping, J. L.; Ducos, P.; Zauberman, J.; Zhao, M. Q.; Rappe, A. M. et al. Crystalline bilayer graphene with preferential stacking from Ni-Cu gradient alloy. ACS Nano 2018, 12, 2275–2282.

[24]

Qian, Y. T.; Kang, D. J. Large-area high-quality AB-stacked bilayer graphene on h-BN/Pt foil by chemical vapor deposition. ACS Appl. Mater. Interfaces 2018, 10, 29069–29075.

[25]

Deng, B.; Liu, Z. F.; Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996.

[26]

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

[27]

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

[28]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[29]

Zhang, J. C.; Liu, X. T.; Zhang, M. Q.; Zhang, R.; Ta, H. Q.; Sun, J. B.; Wang, W. D.; Zhu, W. Q.; Fang, T. T.; Jia, K. C. et al. Fast synthesis of large-area bilayer graphene film on Cu. Nat. Commun. 2023, 14, 3199.

[30]

Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Formation of bilayer bernal graphene: Layer-by-layer epitaxy via chemical vapor deposition. Nano Lett. 2011, 11, 1106–1110.

[31]

Liu, L. X.; Zhou, H. L.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. F. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

[32]

Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rümmeli, M. H. Stranski-krastanov and volmer-weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.

[33]

Fang, W. J.; Hsu, A. L.; Song, Y.; Birdwell, A. G.; Amani, M.; Dubey, M.; Dresselhaus, M. S.; Palacios, T.; Kong, J. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano, 2014, 8, 6491–6499.

[34]

Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

[35]

Jiang, B.; Liang, D. D.; Sun, Z. T.; Ci, H.; Liu, B. Z.; Gao, Y. Q.; Shan, J. Y.; Yang, X. Q.; Rümmeli, M. H.; Wang, J. X. et al. Toward direct growth of ultra‐flat graphene. Adv. Funct. Mater. 2022, 32, 2200428.

[36]

Ge, X. M.; Zhang, Y. H.; Chen, L. X.; Zheng, Y. H.; Chen, Z. Y.; Liang, Y. J.; Hu, S. K.; Li, J.; Sui, Y.; Yu, G. H. et al. Mechanism of SiO x particles formation during CVD graphene growth on Cu substrates. Carbon 2018, 139, 989–998.

[37]

Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506–1519.

[38]

Xu, X. Z.; Qiao, R. X.; Liang, Z. H.; Zhang, R.; Zeng, F. K.; Cui, G. L.; Zhang, X. W.; Zou, D. X.; Guo, Y.; Liu, C. et al. Towards intrinsically pure graphene grown on copper. Nano Res. 2022, 15, 919–924.

[39]

Nguyen, V. L.; Shin, B. G.; Duong, D. L.; Kim, S. T.; Perello, D.; Lim, Y. J.; Yuan, Q. H.; Ding, F.; Jeong, H. Y.; Shin, H. S. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 2015, 27, 1376–1382.

[40]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

[41]

Sun, L. Z.; Wang, Z. H.; Wang, Y. C.; Zhao, L.; Li, Y. L. Z.; Chen, B. H.; Huang, S. H.; Zhang, S. S.; Wang, W. D.; Pei, D. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391.

[42]

Wei, W.; Zhang, C.; Li, H. B.; Pan, J. Q.; Tan, Z.; Li, Y. J.; Cui, Y. In situ growth dynamics of uniform bilayer graphene with different twisted angles following layer-by-layer mode. J. Phys. Chem. Lett. 2022, 13, 11201–11207.

File
12274_2023_6348_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2023
Revised: 27 October 2023
Accepted: 17 November 2023
Published: 19 January 2024
Issue date: May 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020B1515020043 and 2023A1515012743), Guangdong Major Project of Basic and Applied Basic Research (No. 2021B0301030002), the National Natural Science Foundation of China (Nos. 12322406, 52102043, 61905215, 52025023, 51991342 and 52021006), the Key R&D Program of Guangdong Province (No. 2020B010189001), the National Key R&D Program of China (No. 2022YFA1403500), the Pearl River Talent Recruitment Program of Guangdong Province (No. 2019ZT08C321), and the Key Project of Science and Technology of Guangzhou (No. 202201010383). We thank the National Supercomputer Centre in Tianjin for computing support.

Return