Journal Home > Volume 16 , Issue 12

In the process of methane (CH4) oxidation to methanol (CH3OH), CH3OH is more easily oxidized than CH4, resulting in inevitable peroxide phenomenon. In this work, we innovatively proposed a tandem reaction pathway to obtain a photocatalytic oxidation process of CH4 with high activity and selectivity. This work confirms that the methyl hydrogen peroxide (CH3OOH), the first product of CH4 oxidation by H2O2, is then completely reduced to CH3OH in an electron-rich environment. Under irradiation, H2O2 was excited into hydroxyl radicals (·OH) and hydroperoxyl radicals (·OOH) on brookite TiO2 photocatalyst. The ·OH oxidized CH4 to form methyl radicals (·CH3), which then reacted with ·OOH to form CH3OOH. CH3OOH gained electrons on Pt nanoparticles (NPs) and was reduced to CH3OH. At this point, low concentration of ·OH was difficult to further oxidize CH3OH, so that it can exist stably. Under the conditions of room temperature (25 °C) and atmospheric pressure, the productivity of CH3OH was 883 μmol/(g·h), which was 4 times more than the reported photocatalytic CH4 oxidation system with the same reaction conditions, and the selectivity was 100% in liquid products (98.77% for all products). The photocatalyst showed excellent stability and maintained > 85% product activity after 9 catalytic cycles. This work contributed to the development of highly efficient and selective CH4 photooxidation system under mild conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tandem photo-oxidation of methane to methanol at room temperature and pressure over Pt/TiO2

Show Author's information Yingxue Sun1,§Chunling Bo2,3,§Zhijjie Cheng2,4Xinyi Zhang2,3Jianjun Liu1( )Lingyu Piao2,5( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, OceanUniversity of China, Qingdao 266100, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

§ Yingxue Sun and Chunling Bo contributed equally to this work.

Abstract

In the process of methane (CH4) oxidation to methanol (CH3OH), CH3OH is more easily oxidized than CH4, resulting in inevitable peroxide phenomenon. In this work, we innovatively proposed a tandem reaction pathway to obtain a photocatalytic oxidation process of CH4 with high activity and selectivity. This work confirms that the methyl hydrogen peroxide (CH3OOH), the first product of CH4 oxidation by H2O2, is then completely reduced to CH3OH in an electron-rich environment. Under irradiation, H2O2 was excited into hydroxyl radicals (·OH) and hydroperoxyl radicals (·OOH) on brookite TiO2 photocatalyst. The ·OH oxidized CH4 to form methyl radicals (·CH3), which then reacted with ·OOH to form CH3OOH. CH3OOH gained electrons on Pt nanoparticles (NPs) and was reduced to CH3OH. At this point, low concentration of ·OH was difficult to further oxidize CH3OH, so that it can exist stably. Under the conditions of room temperature (25 °C) and atmospheric pressure, the productivity of CH3OH was 883 μmol/(g·h), which was 4 times more than the reported photocatalytic CH4 oxidation system with the same reaction conditions, and the selectivity was 100% in liquid products (98.77% for all products). The photocatalyst showed excellent stability and maintained > 85% product activity after 9 catalytic cycles. This work contributed to the development of highly efficient and selective CH4 photooxidation system under mild conditions.

Keywords: TiO2, methanol, tandem reaction, photocatalytic oxidation of methane

References(46)

[1]

Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

[2]
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 1995 , 28, 154–162.
DOI
[3]

da Silva, M. J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Process. Technol. 2016, 145, 42–61.

[4]

Gao, M. M.; Zhang, T. X.; Ho, G. W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 2022, 15, 9985–10005.

[5]

Ravi, M.; Ranocchiari, M.; van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—A critical assessment. Angew. Chem., Int. Ed. 2017, 56, 16464–16483.

[6]

Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591.

[7]

Tian, Y. D.; Piao, L. Y.; Chen, X. B. Research progress on the photocatalytic activation of methane to methanol. Green Chem. 2021, 23, 3526–3541.

[8]

Periana, R. A.; Taube, D. J.; Evitt, E. R.; Löffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 1993, 259, 340–343.

[9]

Hashiguchi, B. G.; Bischof, S. M.; Konnick, M. M.; Periana, R. A. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction. Acc. Chem. Res. 2012, 45, 885–898.

[10]

Du, H. R.; Li, X. P.; Cao, Z. Y.; Zhang, S.; Yu, W. Z.; Sun, F. Y.; Wang, S. Y.; Zhao, J. J.; Wang, J. Q.; Bai, Y. et al. Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst. Appl. Catal. B: Environ. 2023, 324, 122291.

[11]

Du, J.; Chen, W.; Wu, G. F.; Song, Y. F.; Dong, X.; Li, G. H.; Fang, J. H.; Wei, W.; Sun, Y. H. Evoked methane photocatalytic conversion to C2 oxygenates over ceria with oxygen vacancy. Catalysts 2020, 10, 196.

[12]

Han, C. Q.; Cao, Y. H.; Yu, W.; Huang, Z. A.; Dong, F.; Ye, L. Q.; Yu, S.; Zhou, Y. Selective cleavage of chemical bonds in targeted intermediates for highly selective photooxidation of methane to methanol. J. Am. Chem. Soc. 2023, 15, 8609–8620.

[13]

Jiang, Y. H.; Li, S. Y.; Wang, S. K.; Zhang, Y.; Long, C.; Xie, J.; Fan, X. Y.; Zhao, W. S.; Xu, P.; Fan, Y. Y. et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698–2707.

[14]

Shi, S. L.; Sun, Z. X.; Bao, C. Y.; Gao, T. S.; Hu, Y. H. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H2O2. Int. J. Energy Res. 2020, 44, 2740–2753.

[15]

Xiao, Z.; Shen, J. N.; Zhang, J. J.; Li, D. M.; Li, Y.; Wang, X. X.; Zhang, Z. Z. Intermediate stabilization for tuning photocatalytic selective oxidation of CH4 to CH3OH over Co3O4/ZnO. J. Catal. 2022, 413, 20–30.

[16]

Zeng, Y.; Liu, H. C.; Wang, J. S.; Wu, X. Y.; Wang, S. L. Synergistic photocatalysis-Fenton reaction for selective conversion of methane to methanol at room temperature. Catal. Sci. Technol. 2020, 10, 2329–2332.

[17]

Zeng, Y.; Luo, X.; Li, F.; Huang, A. H.; Wu, H. M.; Xu, G. Q.; Wang, S. L. Noble metal-free FeOOH/Li0.1WO3 core–shell nanorods for selective oxidation of methane to methanol with visible-NIR light. Environ. Sci. Technol. 2021, 55, 7711–7720.

[18]

Zhou, W. C.; Qiu, X. Y.; Jiang, Y. H.; Fan, Y. Y.; Wei, S. L.; Han, D. X.; Niu, L.; Tang, Z. Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. J. Mater. Chem. A 2020, 8, 13277–13284.

[19]

Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.

[20]

Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

[21]

Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.

[22]

An, B.; Li, Z.; Wang, Z.; Zeng, X. D.; Han, X.; Cheng, Y. Q.; Sheveleva, A. M.; Zhang, Z. Y.; Tuna, F.; McInnes, E. J. L. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 2022, 21, 932–938.

[23]

Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.

[24]

Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.

[25]

Konduri, S.; Nair, S. A computational study of gas molecule transport in a polymer/nanoporous layered silicate nanocomposite membrane material. J. Phys. Chem. C 2007, 111, 2017–2024.

[26]

Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 2001, 17, 2664–2669.

[27]

Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films 2000, 358, 122–130.

[28]

Gong, X.; Jiang, Z.; Fang, T. Enhancing selectivity and reducing cost for dehydrogenation of dodecahydro-N-ethylcarbazole by supporting platinum on titanium dioxide. Int. J. Hydrogen Energy 2020, 45, 6838–6847.

[29]

Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 2002, 124, 13547–13553.

[30]

Zhang, W. Q.; Xi, D. W.; Chen, Y. H.; Chen, A. B.; Jiang, Y. W.; Liu, H. J.; Zhou, Z. Y.; Zhang, H.; Liu, Z.; Long, R. et al. Light-driven flow synthesis of acetic acid from methane with chemical looping. Nat. Commun. 2023, 14, 3047.

[31]

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

[32]

Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

[33]

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

[34]

Ab Rahim, M. H.; Forde, M. M.; Jenkins, R. L.; Hammond, C.; He, Q.; Dimitratos, N.; Lopez-Sanchez, J. A.; Carley, A. F.; Taylor, S. H.; Willock, D. J. et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 1280–1284.

[35]

Li, Y. X.; Ouyang, S. X.; Xu, H.; Wang, X.; Bi, Y. P.; Zhang, Y. F.; Ye, J. H. Constructing solid-gas-interfacial Fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc. 2016, 138, 13289–13297.

[36]

Wang, J.; Wang, K.; Wang, F. B.; Xia, X. H. Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 2014, 5, 5285.

[37]

Wang, Y. L.; Li, Y. H.; Wang, X. L.; Hou, Y.; Chen, A. P.; Yang, H. G. Effects of redox mediators on α-Fe2O3 exposed by {012} and {104} facets for photocatalytic water oxidation. Appl. Catal. B: Environ. 2017, 206, 216–220.

[38]

Han, J. T.; Su, H.; Tan, L. D.; Li, C. J. In aqua dual selective photocatalytic conversion of methane to formic acid and methanol with oxygen and water as oxidants without overoxidation. iScience 2023, 26, 105942.

[39]

Wang, J. X.; Li, R. F.; Zeng, D.; Wang, W. J.; Zhang, Y.; Zhang, L.; Wang, W. Z. Photocatalytic conversion of methane selectively into oxygenated products in the presence of chloride ions. Chem. Eng. J. 2023, 452, 139505.

[40]

Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Homogeneous functionalization of methane. Chem. Rev. 2017, 117, 8521–8573.

[41]

Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C. et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987.

[42]

Wei, S. L.; Zhu, X. L.; Zhang, P. Y.; Fan, Y. Y.; Sun, Z. H.; Zhao, X.; Han, D. X.; Niu, L. Aerobic oxidation of methane to formaldehyde mediated by crystal-O over gold modified tungsten trioxide via photocatalysis. Appl. Catal. B: Environ. 2021, 283, 119661.

[43]
Bo, C. L.; Zhang, L.; Liu, X. L.; Chang, H. Q.; Sun, Y. X.; Zhang, X. Y.; Tan, T.; Piao, L. Y. Highly selective photocatalytic oxidation of methane to methyl hydroperoxide. Nano Res., in press, DOI: 10.1007/s12274-023-6152-6.
[44]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[45]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

[46]

Yu, J. G.; Dai, T. M.; Cao, Y. C.; Qu, Y. N.; Li, Y.; Li, J.; Zhao, Y. N.; Gao, H. Y. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation. J. Colloid Interface Sci. 2018, 524, 360–367.

File
12274_2023_6345_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2023
Revised: 05 November 2023
Accepted: 17 November 2023
Published: 05 December 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the financial support by the National Natural Science Foundation of China (No. 21972028) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Return