Journal Home > Volume 17 , Issue 5

Transparent conductive films that are based on nanowire networks are essential to construct flexible, wearable, and even stretchable electronics. However, large-scale precise micropatterning, especially with regard to the controllability of the organizing orientation of nanowires, is a critical challenge. Herein, we proposed a liquid film rupture self-assembly approach for manufacturing transparent conductive films with microstructure arrays based on a highly ordered nanowire network. The large-scale microstructure conductive films were fabricated through air–liquid interface self-assembly and liquid film rupture self-assembly. Six typical micropattern morphologies, including square, hexagon, circle, serpentine, etc., were prepared to reveal the universal applicability of the proposed approach. The homogeneity and controllability of this approach were verified for multiple assemblies. With the assembly cycles increasing, the optical transmittance decreases slightly. In addition, theoretical model analysis is carried out, and the analytical formula of the speed of the film moving with the surface tension and the density of the liquid film is presented. Finally, the feasibility of this approach for piezoresistive strain sensors is verified. This fabrication approach demonstrated a cost-effective and efficient method for precisely arranging nanowires, which is useful in transparent and wearable applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Transparent micropatterned conductive films based on highly-ordered nanowire network

Show Author's information Xin-Ran ZhangHai-Tao DengXu ZengYi-Lin WangPeng HuangXiao-Sheng Zhang( )
School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Transparent conductive films that are based on nanowire networks are essential to construct flexible, wearable, and even stretchable electronics. However, large-scale precise micropatterning, especially with regard to the controllability of the organizing orientation of nanowires, is a critical challenge. Herein, we proposed a liquid film rupture self-assembly approach for manufacturing transparent conductive films with microstructure arrays based on a highly ordered nanowire network. The large-scale microstructure conductive films were fabricated through air–liquid interface self-assembly and liquid film rupture self-assembly. Six typical micropattern morphologies, including square, hexagon, circle, serpentine, etc., were prepared to reveal the universal applicability of the proposed approach. The homogeneity and controllability of this approach were verified for multiple assemblies. With the assembly cycles increasing, the optical transmittance decreases slightly. In addition, theoretical model analysis is carried out, and the analytical formula of the speed of the film moving with the surface tension and the density of the liquid film is presented. Finally, the feasibility of this approach for piezoresistive strain sensors is verified. This fabrication approach demonstrated a cost-effective and efficient method for precisely arranging nanowires, which is useful in transparent and wearable applications.

Keywords: flexible electronics, nanowires, micropatterning, transparent conductive network, micro electromechanical systems (MEMS)

References(46)

[1]

He, W. W.; Ye, C. H. Flexible transparent conductive films on the basis of Ag nanowires: Design and applications: A review. J. Mater. Sci. Technol. 2015, 31, 581–588.

[2]
Liu, X. Y.; Zhang, T.; Xu, M. C.; Li, Y.; Wang, H. Q.; Chen, Y. K.; Zhang, X. Z. H.; Wang, Z. N.; Li, X. Y.; Zhou, W. J. et al. Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria. Nano Res., in press, https://doi.org/10.1007/s12274-023-5954-x.
[3]

Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

[4]

Huang, Y.; Liao, S. Y.; Ren, J.; Khalid, B.; Peng, H. L.; Wu, H. A transparent, conducting tape for flexible electronics. Nano Res. 2016, 9, 917–924.

[5]

Minami, T. Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 2008, 516, 5822–5828.

[6]

Lan, Y. F.; Chen, Y. H.; He, J. L.; Chang, J. T. Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature. Vacuum 2014, 107, 56–61.

[7]

Shi, X. H.; Xu, K. J. Properties of fluorine-doped tin oxide films prepared by an improved sol–gel process. Mater. Sci. Semicond. Process. 2017, 58, 1–7.

[8]

Khashan, K. S.; Sulaiman, G. M.; Hussain, S. A.; Marzoog, T. R.; Jabir, M. S. Synthesis, characterization and evaluation of anti-bacterial, anti-parasitic and anti-cancer activities of aluminum-doped zinc oxide nanoparticles. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3677–3693.

[9]

Chen, T.; Li, H. P.; Li, J.; Hu, S. Y.; Ye, P.; Yan, Y. W. Direct writing of silver microfiber with precise control on patterning for robust and flexible ultrahigh-performance transparent conductor. J. Mater. Sci. Technol. 2020, 47, 103–112.

[10]

Maurer, J. H. M.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano Lett. 2016, 16, 2921–2925.

[11]

Zhan, C. X.; Yu, G. Q.; Lu, Y.; Wang, L. Y.; Wujcik, E.; Wei, S. Y. Conductive polymer nanocomposites: A critical review of modern advanced devices. J. Mater. Chem. C 2017, 5, 1569–1585.

[12]

Wu, X. L.; Zhou, Z. M.; Wang, Y. H.; Li, J. G. Syntheses of silver nanowires ink and printable flexible transparent conductive film: A review. Coatings 2020, 10, 865.

[13]

Won, P.; Park, J. J.; Lee, T.; Ha, I.; Han, S.; Choi, M.; Lee, J.; Hong, S.; Cho, K. J.; Ko, S. H. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 2019, 19, 6087–6096.

[14]

Ahn, Y.; Lee, H.; Lee, D.; Lee, Y. High conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 2014, 6, 18401–18407.

[15]

Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

[16]

Mehilch, J.; Miyata, Y.; Sahinohara, H.; Ravoo, B. J. Fabrication of a carbon-nanotube-based field-effect transistor by microcontact printing. Small 2012, 8, 2258–2263.

[17]

Kobayashi, T.; Bando, M.; Kimura, N.; Shimizu, K.; Kadono, K.; Umezu, N.; Miyahara, K.; Hayazaki, S.; Nagai, S.; Mizuguchi, Y. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 2013, 102, 023112.

[18]

Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846.

[19]

Shi, L. R. Flexible transparent silver nanowires conductive films fabricated with spin-coating method. Micro Nano Lett. 2023, 18, e12151.

[20]

Yang, J. J.; Zeng, W.; Li, Y. X.; Yi, Z. C.; Zhou, G. F. Fabrication of screen printing-based AgNWs flexible transparent conductive film with high stability. Micromachines 2020, 11, 1027.

[21]

Wu, M. Y.; Zheng, H. R.; Li, X. P.; Yu, S. H. Highly transparent low resistance ATO/AgNWs/ATO flexible transparent conductive thin films. Ceram. Int. 2020, 46, 4344–4350.

[22]
Fahad, S.; Yu, H. J.; Wang, L.; Liu, J. H.; Li, S. B. Fu, J. C.; Amin, B. U.; Khan, R. U.; Mehmood, S.; Haq, F. et al. Synthesis of AgNWs using copper bromide as stabilizing agent and oxygen scavenger and their application in conductive thin films. Mater. Chem. Phys. 2021 , 267, 124643.
[23]

Ding, X. H.; Cao, H. L.; Sun, S. Y.; Li, M. Y.; Liu, H. T. Highly conductive and stretchable film fabricated by efficient transfer of silver nanowires. High Perform. Polym. 2019, 31, 1153–1161.

[24]

Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. P. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507–5515.

[25]

Maurer, J. H. M.; González-García, L.; Backes, I. K.; Reiser, B.; Schlossberg, S. M.; Kraus, T. Direct nanoimprinting of a colloidal self-organizing nanowire ink for flexible, transparent electrodes. Adv. Mater. Technol. 2017, 2, 1700034.

[26]
Liu, G. S.; Zheng, H. J.; Zeng, Z. J.; Wang, Y. X.; Guo, W. D. Wang, T.; Chen, H.; Chen, Y. S.; Hu, S. Q.; Chen, L. et al. Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes. Nano Res. 2022 , 15, 4552–4562.
[27]

Li, X. L.; Lee, G. S.; Park, S. H.; Kong, H.; An, T. K.; Kim, S. H. Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors. Org. Electron. 2018, 62, 357–365.

[28]

Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

[29]

Tokuno, T.; Nogi, M.; Jiu, J. T.; Sugahara, T.; Suganuma, K. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template. Langmuir 2012, 28, 9298–9302.

[30]

Kwon, Y. T.; Moon, J. W.; Choi, Y. M.; Kim, S.; Ryu, S. H.; Choa, Y. H. Novel concept for fabricating a flexible transparent electrode using the simple and scalable self-assembly of ag nanowires. J. Phys. Chem. C 2017, 121, 5740–5746.

[31]

Khatri, I.; Liu, Q. M.; Ishikawa, R.; Ueno, K.; Shirai, H. Self assembled silver nanowire mesh as top electrode for organic–inorganic hybrid solar cell. Can. J. Phys. 2014, 92, 867–870.

[32]

Su, Z. M.; Yu, H. S. C.; Zhang, X. S.; Brugger, J.; Zhang, H. X. Liquid assembly of floating nanomaterial sheets for transparent electronics. Adv. Mater. Technol. 2019, 4, 1900398.

[33]

Zhang, X. R.; Deng, H. T.; Wen, D. L.; Zeng, X.; Wang, Y. L.; Huang, P.; Zhang, X. S. Patterned nanoparticle arrays fabricated using liquid film rupture self-assembly. Langmuir 2023, 39, 10660–10669.

[34]

Scriven, L. E.; Sternling, C. V. The marangoni effects. Nature 1960, 187, 186–188.

[35]

Xu, X. F.; Luo, J. B. Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 2007, 91, 124102.

[36]

Schmitt, M.; Stark, H. Marangoni flow at droplet interfaces: Three-dimensional solution and applications. Phys. Fluids 2016, 28, 012106.

[37]

Karpitschka, S.; Liebig, F.; Riegler, H. Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 2017, 33, 4682–4687.

[38]

Chen, Y.; Liang, T. W.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H.; Liu, G. S. Self-assembly, alignment, and patterning of metal nanowires. Nanoscale Horiz. 2022, 7, 1299–1339.

[39]

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.

[40]

Marangoni, C.; Stefanelli, P.; Liceo, R. Monografia sulle bolle liquide. Nuovo Cim. (1869-1876) 1872, 7, 301–356

[41]

Ranz, W. E. Some experiments on the dynamics of liquid films. J. Appl. Phys. 1959, 30, 1950–1955.

[42]

Chatzigiannakis, E.; Vermant, J. Breakup of thin liquid films: From stochastic to deterministic. Phys. Rev. Lett. 2020, 125, 158001.

[43]

Taylor, G. I. The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 1959, 253, 313–321.

[44]

Culick, F. E. C. Comments on a ruptured soap film. J. Appl. Phys. 1960, 31, 1128–1129.

[45]

Rahman, M. R.; Shen, L.; Ewen, J. P.; Collard, B.; Heyes, D. M.; Dini, D.; Smith, E. R. Non-equilibrium molecular simulations of thin film rupture. J. Chem. Phys. 2023, 158, 151104.

[46]

Pelusi, F.; Sega, M.; Harting, J. Liquid film rupture beyond the thin-film equation: A multi-component lattice Boltzmann study. Phys. Fluids 2022, 34, 062109.

Video
12274_2023_6341_MOESM2_ESM.mp4
File
12274_2023_6341_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2023
Revised: 07 November 2023
Accepted: 17 November 2023
Published: 28 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 62074029, 61905035, 61971108, 62004029, and 51905554), the National Key Research and Development Program of China (No. 2022YFB3206100), the Key R&D Program of Sichuan Province (Nos. 2022JDTD0020 and 2020ZHCG0038), the Sichuan Science and Technology Program (Nos. 2020JDJQ0036, 2019YJ0198, and 2020YJ0015), the Natural Science Foundation of Sichuan (No. 2022NSFSC1941), and the Fundamental Research Funds for the Central Universities (No. ZYGX2019Z002).

Return