Journal Home > Volume 17 , Issue 5

Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology, which are emerging technologies to ameliorate environmental problems. Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions, making their electrocatalytic ability less effective. To improve this, defect engineering is a valuable method for regulating the electronic structure and coordination environment. Herein, this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions, including the different types of defects, construction methods, and characterization techniques. It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions. Finally, it goes over the challenges and future outlooks for defect spinels. This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts.


menu
Abstract
Full text
Outline
About this article

Defect spinel oxides for electrocatalytic reduction reactions

Show Author's information Zhijuan Liu1,§Jinyu Guo1,§Lu-yu Liu1Fen Wang1Zhijie Kong1( )Yanyong Wang2( )
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

§ Zhijuan Liu and Jinyu Guo contributed equally to this work.

Abstract

Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology, which are emerging technologies to ameliorate environmental problems. Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions, making their electrocatalytic ability less effective. To improve this, defect engineering is a valuable method for regulating the electronic structure and coordination environment. Herein, this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions, including the different types of defects, construction methods, and characterization techniques. It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions. Finally, it goes over the challenges and future outlooks for defect spinels. This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts.

Keywords: defect, dynamic evolution, electrocatalytic mechanism, spinel oxides, electrochemical reduction reactions

References(244)

[1]

He, H. Z.; Zhang, Y.; Li, Y. Y.; Wang, P. Recent innovations of silk-derived electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction reaction. Int. J. Hydrogen Energy 2021, 46, 7848–7865.

[2]

Zhao, Z. Q.; Chen, H.; Zhang, W. Y.; Yi, S.; Chen, H. L.; Su, Z.; Niu, B.; Zhang, Y. Y.; Long, D. H. Defect engineering in carbon materials for electrochemical energy storage and catalytic conversion. Mater. Adv. 2023, 4, 835–867.

[3]

Zhang, L. L.; Xiao, J.; Wang, H. Y.; Shao, M. H. Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catal. 2017, 7, 7855–7865.

[4]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[5]

Ha, Y.; L. Shi, L. X.; Chen, Z. L.; Wu, R. B. Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 2019, 6, 1900272.

[6]

Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4–Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

[7]

Liu, B.; Cheng, J. Y.; Peng, H. Q.; Chen, D.; Cui, X.; Shen, D.; Zhang, K.; Jiao, T. P.; Li, M. F.; Lee, C. S. et al. In situ nitridated porous nanosheet networked Co3O4–Co4N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 2019, 7, 775–782.

[8]

Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

[9]

Li, Z.; Zhang, Y.; Feng, Y.; Cheng, C. Q.; Qiu, K. W.; Dong, C. K.; Liu, H.; Du, X. W. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 2019, 29, 1903444.

[10]

Wang, B.; Lu, X. Y.; Wong, K. Y.; Tang, Y. Y. Facile solvothermal synthesis and superior lithium storage capability of Co3O4 nanoflowers with multi-scale dimensions. Mater. Chem. Front. 2017, 1, 468–476.

[11]

Wu, H. T.; Sun, W.; Shen, J. R.; Rooney, D. W.; Wang, Z. H.; Sun, K. N. Role of flower-like ultrathin Co3O4 nanosheets in water splitting and non-aqueous Li-O2 batteries. Nanoscale 2018, 10, 10221–10231.

[12]

Qiu, Y. H.; Wang, Y. P. Controllable synthesis of porous Co3O4 nanorods and their ethanol-sensing performance. Ceram. Int. 2022, 48, 29659–29668.

[13]

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

[14]

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.

[15]

Li, S. D.; Fan, J. C.; Li, S. Y.; Ma, Y.; Wu, J. H.; Jin, H. G.; Chao, Z. S.; Pan, D.; Guo, Z. H. In situ-grown Co3O4 nanorods on carbon cloth for efficient electrocatalytic oxidation of urea. J. Nanostruct. Chem 2021, 11, 735–749.

[16]

Lyu, L.; Zheng, S. N.; Wang, F. L.; Liu, Y.; Liu, J. R. High-performance microwave absorption of MOF‐derived Co3O4@N-doped carbon anchored on carbon foam. J. Colloid Interface Sci. 2021, 602, 197–206.

[17]

Tan, P.; Chen, B.; Xu, H. R.; Cai, W. Z.; He, W.; Ni, M. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries. Appl. Catal. B: Environ. 2019, 241, 104–112.

[18]

Bian, W. Y.; Yang, Z. R.; Strasser, P.; Yang, R. Z. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J. Power Sources 2014, 250, 196–203.

[19]

Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659–664.

[20]

Cai, S. X.; Zhang, D. S.; Shi, L. Y.; Xu, J.; Zhang, L.; Huang, L.; Li, H. R.; Zhang, J. P. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NO x catalysts. Nanoscale 2014, 6, 7346–7353.

[21]

Khilari, S.; Pandit, S.; Varanasi, J. L.; Das, D.; Pradhan, D. Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl. Mater. Interfaces 2015, 7, 20657–20666.

[22]

Sun, J. Q.; Yang, D. J.; Lowe, S.; Zhang, L. J.; Wang, Y. Z.; Zhao, S. L.; Liu, P. R.; Wang, Y.; Tang, Z. Y.; Zhao, H. J. et al. Sandwich-like reduced graphene oxide/carbon black/amorphous cobalt borate nanocomposites as bifunctional cathode electrocatalyst in rechargeable zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801495.

[23]

Bae, J.; Shin, D.; Jeong, H.; Choe, C.; Choi, Y.; Han, J. W.; Lee, H. Facet-dependent Mn doping on shaped Co3O4 crystals for catalytic oxidation. ACS Catal. 2021, 11, 11066–11074.

[24]

Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

[25]

He, Y.; Zhou, W. Q.; Li, D. Q.; Liang, Y. M.; Chao, S. X.; Zhao, X. Q.; Zhang, M. M.; Xu, J. K. Rare earth doping engineering tailoring advanced oxygen-vacancy Co3O4 with tunable structures for high-efficiency energy storage. Small 2023, 19, 2206956.

[26]

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

[27]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[28]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[29]

Tomon, C.; Krittayavathananon, A.; Sarawutanukul, S.; Duangdangchote, S.; Phattharasupakun, N.; Homlamai, K.; Sawangphruk, M. Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li-O2 batteries. Electrochim. Acta 2021, 367, 137490.

[30]

Hsu, S. H.; Hung, S. F.; Wang, H. Y.; Xiao, F. X.; Zhang, L. P.; Yang, H. B.; Chen, H. M.; Lee, J. M.; Liu, B. Tuning the electronic spin state of catalysts by strain control for highly efficient water electrolysis. Small Methods 2018, 2, 1800001.

[31]

Zhong, W. D.; Yang, C. F.; Wu, J.; Xu, W. L.; Zhao, R.; Xiang, H.; Shen, K.; Zhang, Q.; Li, X. K. Oxygen vacancies induced by charge compensation tailoring Ni-doped Co3O4 nanoflakes for efficient hydrogen evolution. Chem. Eng. J. 2022, 436, 134813.

[32]

Tao, H. B.; Fang, L. W.; Chen, J. Z.; Yang, H. B.; Gao, J. J.; Miao, J. W.; Chen, S. L.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985.

[33]

Ding, D. N.; Shen, K.; Chen, X. D.; Chen, H. R.; Chen, J. Y.; Fan, T.; Wu, R. F.; Li, Y. W. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catal. 2018, 8, 7879–7888.

[34]

Xiang, H. X.; Tan, A. D.; Piao, J. H.; Fu, Z. Y.; Liang, Z. X. Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 2019, 15, 1901848.

[35]

Yang, J.; Guo, D. H.; Zhao, S. L.; Lin, Y.; Yang, R.; Xu, D. D.; Shi, N. E.; Zhang, X. S.; Lu, L. Z.; Lan, Y. Q. et al. Cobalt phosphides nanocrystals encapsulated by P-doped carbon and Married with P-doped graphene for overall water splitting. Small 2019, 15, 1804546.

[36]

Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251

[37]

Zhao, H. Y.; Sun, C. H.; Jin, Z.; Wang, D. W.; Yan, X. C.; Chen, Z. G.; Zhu, G. S.; Yao, X. D. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739.

[38]

Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

[39]

Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285–297.

[40]

Wang, Q. C.; Xue, X. X.; Lei, Y. P.; Wang, Y. C.; Feng, Y. X.; Xiong, X.; Wang, D. S.; Li, Y. D. Engineering of electronic states on Co3O4 ultrathin nanosheets by cation substitution and anion vacancies for oxygen evolution reaction. Small 2020, 16, 2001571.

[41]

Dai, W. L.; Zou, M. L.; Zhao, C.; Zhang, J.; Wang, L. G.; Wang, X. S.; Yang, L. X.; Zhou, L.; Zou, J. P.; Luo, X. B. et al. Monoatomic oxygen fueled by oxygen vacancies governs the photothermocatalytic deep oxidation of toluene on Na-doped Co3O4. Appl. Catal. B: Environ. 2022, 317, 121769.

[42]

Huang, Y. J.; Li, M.; Pan, F.; Zhu, Z. Y.; Sun, H. M.; Tang, Y. W.; Fu, G. T. Plasma‐induced Mo‐doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy 2023, 5, e279.

[43]

Thangasamy, P.; Selvakumar, K.; Sathish, M.; Kumar, S. M. S.; Thangamuthu, R. Anchoring of ultrafine Co3O4 nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction. Catal. Sci. Technol. 2017, 7, 1227–1234.

[44]

Muthurasu, A.; Sheen Mers, S. V.; Ganesh, V. Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen evolution and oxygen reduction reactions. Int. J. Hydrogen Energy 2018, 43, 4726–4737.

[45]

Liu, J.; Xie, J. H.; Wang, R. Y.; Liu, B.; Meng, X.; Xu, X. Q.; Tang, B.; Cai, Z.; Zou, J. L. Interfacial electron modulation of Cu2O by Co3O4 embedded in hollow carbon cube skeleton for boosting oxygen reduction/revolution reactions. Chem. Eng. J. 2022, 450, 137961.

[46]

Dai, L. J.; Liu, M.; Song, Y.; Liu, J. J.; Wang, F. Mn3O4-decorated Co3O4 nanoparticles supported on graphene oxide: Dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy 2016, 27, 185–195.

[47]

Shi, Y. X.; Pan, X. F.; Li, B.; Zhao, M. M.; Pang, H. Co3O4 and its composites for high-performance Li-ion batteries. Chem. Eng. J. 2018, 343, 427–446.

[48]

Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.

[49]

Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater. 2019, 31, 1902509.

[50]

Zhou, Y.; Du, Y. H.; Xi, S. B.; Xu, Z. J. Spinel manganese ferrites for oxygen electrocatalysis: Effect of Mn valency and occupation site. Electrocatalysis 2018, 9, 287–292.

[51]

Liu, F.; Fan, Z. X. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev 2023, 52, 1723–1772.

[52]

Liu, D.; Dai, L. M.; Lin, X. N.; Chen, J. F.; Zhang, J.; Feng, X. L.; Müllen, K.; Zhu, X.; Dai, S. Chemical approaches to carbon-based metal-free catalysts. Adv. Mater. 2019, 31, 1804863.

[53]

Wang, X. Q.; Liu, C. G.; Neff, D.; Fulvio, P. F.; Mayes, R. T.; Zhamu, A.; Fang, Q.; Chen, G. R.; Meyer, H. M.; Jang, B. Z. et al. Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A 2013, 1, 7920–7926.

[54]

Kim, N. D.; Kim, W.; Joo, J. B.; Oh, S.; Kim, P.; Kim, Y.; Yi, J. Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. J. Power Sources 2008, 180, 671–675.

[55]

Chang, C. K.; Kataria, S.; Kuo, C. C.; Ganguly, A.; Wang, B. Y.; Hwang, J. Y.; Huang, K. J.; Yang, W. H.; Wang, S. B.; Chuang, C. H. et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano 2013, 7, 1333–1341.

[56]

Szmigiel, D.; Raróg-Pilecka, W.; Miśkiewicz, E.; Kaszkur, Z.; Kowalczyk, Z. Ammonia decomposition over the ruthenium catalysts deposited on magnesium-aluminum spinel. Appl. Catal. A: Gen. 2004, 264, 59–63.

[57]

Saravanakkumar, D.; Tulasi, S. K.; Srivastava, B. K.; Kumar, N. M.; Devi, N. G.; Sakhare, D. T. Influence of physical characteristics of graphene/Al2O3 composites employing nano particles based organic phase changing materials. Mater. Today: Proc. 2023, 77, 448–454.

[58]

Nivoix, V.; Gillot, B. Preparation, characterization and reactivity toward oxygen of new nanosized vanadium-iron spinels. Solid State Ionics 1998, 111, 17–25.

[59]

Baikalov, N.; Rakhimbek, I.; Konarov, A.; Mentbayeva, A.; Zhang, Y. G.; Bakenov, Z. Catalytic effects of Ni nanoparticles encapsulated in few-layer N-doped graphene and supported by N-doped graphitic carbon in Li-S batteries. RSC Adv. 2023, 13, 9428–9440.

[60]

Wang, W.; Wang, M. Nitrogen modulated NiMoO4 with enhanced activity for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catal. Sci. Technol. 2021, 11, 7326–7330.

[61]

Ma, W. M.; Zhang, X. J.; Meng, Y. J.; Zhao, J. G. Engineering design of N-doped Co3O4 nanofibers as sulfur host for highly stable cathode materials. Ionics 2022, 28, 629–633.

[62]

Guo, Z. Y.; Li, C. X.; Gao, M.; Han, X.; Zhang, Y. J.; Zhang, W. J.; Li, W. W. Mn–O covalency governs the intrinsic activity of Co-Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem., Int. Ed. 2021, 60, 274–280.

[63]

Lv, X. W.; Liu, Y. P.; Tian, W. W.; Gao, L. J.; Yuan, Z. Y. Aluminum and phosphorus codoped “superaerophobic” Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries. J. Energy Chem. 2020, 50, 324–331.

[64]

Tang, B. S.; Yang, J.; Kou, Z. K.; Xu, L.; Seng, H. L.; Xie, Y. N.; Handoko, A. D.; Liu, X. X.; Seh, Z. W.; Kawai, H. et al. Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Mater. 2019, 23, 1–7.

[65]

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

[66]

Li, R. C.; Guo, Y. G.; Chen, H. X.; Wang, K.; Tan, R. T.; Long, B.; Tong, Y. X.; Tsiakaras, P.; Song, S. Q.; Wang, Y. Anion-cation double doped Co3O4 microtube architecture to promote high-valence Co species formation for enhanced oxygen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 11901–11910.

[67]

Jin, D.; Woo, H.; Prabhakaran, S.; Lee, Y.; Kim, M. H.; Kim, D. H.; Lee, C. Single phase trimetallic spinel CoCr x Rh2− x O4 nanofibers for highly efficient oxygen evolution reaction under freshwater mimicking seawater conditions. Adv. Funct. Mater. 2023, 33, 2301559.

[68]

Duraisamy, V.; Sudha, V.; Dharuman, V.; Senthil Kumar, S. M. Highly efficient electrochemical sensing of acetaminophen by cobalt oxide-embedded nitrogen-doped hollow carbon spheres. ACS Biomater. Sci. Eng. 2023, 9, 1682–1693.

[69]

Bian, J. J.; Cheng, X. P.; Meng, X. Y.; Wang, J.; Zhou, J. G.; Li, S. Q.; Zhang, Y. F.; Sun, C. W. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system. ACS Appl. Energy Mater. 2019, 2, 2296–2304.

[70]

Mers, S. V. S.; Maruthapandian, V.; Ganesh, V. Highly efficient bifunctional electrocatalyst using structurally architectured N-doped cobalt oxide. ChemistrySelect 2018, 3, 8752–8762.

[71]

Mei, Z. J.; Shen, Z. M.; Wang, W. H.; Zhang, Y. J. Novel sorbents of non-metal-doped spinel Co3O4 for the removal of gas-phase elemental mercury. Environ. Sci. Technol. 2008, 42, 590–595.

[72]

Li, Y. J.; Li, W. W.; Yang, C.; Tao, K.; Ma, Q. X.; Han, L. Engineering coordination polymer-derived one-dimensional porous S-doped Co3O4 nanorods with rich oxygen vacancies as high-performance electrode materials for hybrid supercapacitors. Dalton Trans. 2020, 49, 10421–10430.

[73]

Gao, H.; Chen, S. G.; Wei, S.; Li, W.; Zhang, M. T.; Sun, N. Facile synthesis of ultralight S-doped Co3O4 microflowers@reduced graphene oxide aerogels with defect and interface engineering for broadband electromagnetic wave absorption. J. Mater. Chem. C 2022, 10, 12630–12643.

[74]

Jiang, T. T.; Yin, N. Q.; Bai, Z. M.; Dai, P.; Yu, X. X.; Wu, M. Z.; Li, G. Wet chemical synthesis of S doped Co3O4 nanosheets/reduced graphene oxide and their application in dye sensitized solar cells. Appl. Surf. Sci. 2018, 450, 219–227.

[75]

Li, Y. H.; Li, L. X.; Du, F. Y. Amorphous S-doped Ni x Co3− x O4 for high-performance asymmetric supercapacitors. Electrochim. Acta. 2022, 434, 141326.

[76]

Zhang, Z. M.; Sun, H. N.; Li, J. F.; Shi, Z. H.; Fan, M. H.; Bian, H. Q.; Wang, T.; Gao, D. Q. S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J. Power Sources 2021, 491, 229584.

[77]

Lu, M. X.; Kang, G. Y.; Deng, Y. J. Construction of mesoporous S-doped Co3O4 with abundant oxygen vacancies as an efficient activator of PMS for organic dye degradation. CrystEngComm 2023, 25, 2767–2777.

[78]

Zhang, J. Q.; Shang, X.; Ren, H.; Chi, J. Q.; Fu, H.; Dong, B.; Liu, C. G.; Chai, Y. M. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107.

[79]

Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441–15447.

[80]

Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S. B.; Du, Y. H.; Lou, X. W. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 2020, 32, 2002235.

[81]

Meng, S. C.; Sun, S. C.; Liu, Y.; Lu, Y. K.; Chen, M. Synergistic modulation of inverse spinel Fe3O4 by doping with chromium and nitrogen for efficient electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 624, 433–442.

[82]

Bera, S.; Saha, A.; Mondal, S.; Biswas, A.; Mallick, S.; Chatterjee, R.; Roy, S. Review of defect engineering in perovskites for photovoltaic application. Mater. Adv. 2022, 3, 5234–5247.

[83]

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

[84]

Li, H. Y.; Sun, S. N.; Xi, S. B.; Chen, Y. B.; Wang, T.; Du, Y. H.; Sherburne, M.; Ager, J. W.; Fisher, A. C.; Xu, Z. C. J. Metal-oxygen hybridization determined activity in spinel-based oxygen evolution catalysts: A case study of ZnFe2− x Cr x O4. Chem. Mater. 2018, 30, 6839–6848.

[85]

Lu, Y.; Li, C. J.; Zhang, Y.; Cao, X.; Xie, G.; Wang, M. L.; Peng, D. D.; Huang, K.; Zhang, B. W.; Wang, T. et al. Engineering of cation and anion vacancies in Co3O4 thin nanosheets by laser irradiation for more advancement of oxygen evolution reaction. Nano Energy 2021, 83, 105800.

[86]

Lu, Y. X.; Zhou, L.; Wang, S. Y.; Zou, Y. Q. Defect engineering of electrocatalysts for organic synthesis. Nano Res. 2023, 16, 1890–1912.

[87]

Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

[88]

Gao, R.; Shang, Z. R.; Zheng, L. R.; Wang, J. K.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 nanosheets for Li-O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction. Inorg. Chem. 2019, 58, 4989–4996.

[89]

Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.

[90]

Xiang, K.; Wu, D.; Fan, Y.; You, W.; Zhang, D. D.; Luo, J. L.; Fu, X. Z. Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution. Chem. Eng. J. 2021, 425, 130583.

[91]

Zhou, P.; Wang, Y. Y.; Xie, C.; Chen, C.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chem. Commun. 2017, 53, 11778–11781.

[92]

Peng, Y.; Wu, H.; Yuan, M. J.; Li, F. F.; Zou, X. L.; Ng, Y. H.; Hsu, H. Y. Chemical reduction-induced surface oxygen vacancies of BiVO4 photoanodes with enhanced photoelectrochemical performance. Sustain. Energy Fuels 2021, 5, 2284–2293.

[93]

Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

[94]

Lim, D.; Kong, H.; Kim, N.; Lim, C.; Ahn, W. S.; Baeck, S. H. Oxygen-deficient NiFe2O4 spinel nanoparticles as an enhanced electrocatalyst for the oxygen evolution reaction. ChemNanoMat 2019, 5, 1296–1302.

[95]

Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613.

[96]

Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.

[97]

Li, K.; Zhang, R. R.; Gao, R. J.; Shen, G. Q.; Pan, L.; Yao, Y. D.; Yu, K. H.; Zhang, X. W.; Zou, J. J. Metal-defected spinel Mn x Co3− x O4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2019, 244, 536–545.

[98]

Zhang, Y. C.; Ullah, S.; Zhang, R. R.; Pan, L.; Zhang, X. W.; Zou, J. J. Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Appl. Catal. B: Environ. 2020, 277, 119247.

[99]

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

[100]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678.

[101]

Guo, J. Y.; Wang, G. J.; Cui, S. S.; Xia, B. Y.; Liu, Z. J.; Zang, S. Q. Vacancy and strain engineering of Co3O4 for efficient water oxidation. J. Colloid Interface Sci. 2023, 629, 346–354.

[102]

Curran, J. E. Physical and chemical etching in plasmas. Thin Solid Films 1981, 86, 101–116.

[103]

Tripathi, M.; Markevich, A.; Böttger, R.; Facsko, S.; Besley, E.; Kotakoski, J.; Susi, T. Implanting germanium into graphene. ACS Nano 2018, 12, 4641–4647.

[104]

Yoon, K.; Rahnamoun, A.; Swett, J. L.; Iberi, V.; Cullen, D. A.; Vlassiouk, I. V.; Belianinov, A.; Jesse, S.; Sang, X. H.; Ovchinnikova, O. S. et al. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano 2016, 10, 8376–8384.

[105]

He, D.; Song, X. Y.; Li, W. Q.; Tang, C. Y.; Liu, J. C.; Ke, Z. J.; Jiang, C. Z.; Xiao, X. H. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance. Angew. Chem., Int. Ed. 2020, 59, 6929–6935.

[106]

Zeng, H. B.; Du, X. W.; Singh, S. C.; Kulinich, S. A.; Yang, S. K.; He, J. P.; Cai, W. P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353.

[107]

Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

[108]

Dou, S.; Dong, C. L.; Hu, Z.; Huang, Y. C.; Chen, J. L.; Tao, L.; Yan, D. F.; Chen, D. W.; Shen, S. H.; Chou, S. L. et al. Atomic-scale CoO x species in metal-organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1702546.

[109]

Zhang, Y. Q.; Liu, H. W.; Zhao, S. Y.; Xie, C.; Huang, Z. G.; Wang, S. Y. Insights into the dynamic evolution of defects in electrocatalysts. Adv. Mater. 2023, 35, 2209680.

[110]

Wang, X.; Zhuang, L. Z.; Jia, Y.; Zhang, L. J.; Yang, Q.; Xu, W. J.; Yang, D. J.; Yan, X. C.; Zhang, L. Z.; Zhu, Z. H. et al. One-step in- situ synthesis of vacancy-rich CoFe2O4@defective graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Res. Chin. Univ. 2020, 36, 479–487.

[111]

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

[112]

Zhang, Y.; Lu, T.; Ye, Y. K.; Dai, W. J.; Zhu, Y. A.; Pan, Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for Co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555.

[113]

Liu, S.; Cheng, H.; Xu, K.; Ding, H.; Zhou, J. Y.; Liu, B. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dual modulation via electrochemical reduction activiation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett. 2019, 4, 423–429.

[114]

Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675–685.

[115]

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface Reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.

[116]

Červenka, J.; Katsnelson, M. I.; Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840–844.

[117]

Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir (111). Nano Lett. 2008, 8, 565–570.

[118]

Lu, W.; Yan, L.; Ye, W. Q.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A 2022, 10, 15267–15296.

[119]

Yan, C. S.; Chen, G.; Sun, J. X.; Lv, C. D.; Pei, J. Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy 2015, 15, 558–566.

[120]

Li, X. M.; Su, X. Y.; Pei, Y.; Liu, J.; Zheng, X. J.; Tang, K. Y.; Guan, G. Q.; Hao, X. G. Generation of edge dislocation defects in Co3O4 catalysts: An efficient tactic to improve catalytic activity for oxygen evolution. J. Mater. Chem. A 2019, 7, 10745–10750.

[121]

Guan, S. Y.; An, L. L.; Ashraf, S.; Zhang, L. N.; Liu, B. Z.; Fan, Y. P.; Li, B. J. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl. Catal. B: Environ. 2020, 269, 118775.

[122]

Wang, L.; Qin, T.; Wang, J. J.; Wang, J. Y.; Zhang, J.; Cong, Y.; Li, X. K.; Li, Y. J. Grain boundary engineering of Co3O4 nanomeshes for efficient electrochemical oxygen evolution. Nanotechnology 2020, 31, 455401.

[123]

Xi, Y. M.; Mo, W. H.; Fan, Z. X.; Hu, L. X.; Chen, W. B.; Zhang, Y.; Wang, P.; Zhong, S. X.; Zhao, Y. L.; Bai, S. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction. J. Mater. Chem. A 2022, 10, 20934–20945.

[124]

Ou, G.; Wu, F. C.; Huang, K.; Hussain, N.; Zu, D.; Wei, H. H.; Ge, B. H.; Yao, H. Z.; Liu, L.; Li, H. N. et al. Boosting the electrocatalytic water oxidation performance of CoFe2O4 nanoparticles by surface defect engineering. ACS Appl. Mater. Interfaces 2019, 11, 3978–3983.

[125]

Yang, J.; Wang, Y. N.; Yang, J.; Pang, Y. J.; Zhu, X. Q.; Lu, Y. Z.; Wu, Y. T.; Wang, J. J.; Chen, H.; Kou, Z. K. et al. Quench-induced surface engineering boosts alkaline freshwater and seawater oxygen evolution reaction of porous NiCo2O4 nanowires. Small 2022, 18, 2106187.

[126]

Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

[127]

Zhang, B. W.; Qi, Z. Y.; Wu, Z. S.; Lui, Y. H.; Kim, T. H.; Tang, X. H.; Zhou, L.; Huang, W. Y.; Hu, S. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett. 2019, 4, 328–336.

[128]

Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.

[129]

Jang, E. J.; Lee, J.; Kwak, J. H. Morphology change and phase transformation of alumina related to defect sites and its use in catalyst preparation. Catal. Today 2020, 352, 323–328.

[130]

Zhang, H.; An, Q.; Su, Y.; Quan, X.; Chen, S. Co3O4 with upshifted d-band center and enlarged specific surface area by single-atom Zr doping for enhanced PMS activation. J. Hazard. Mater. 2023, 448, 130987.

[131]

Zhou, C. H.; Zhao, S. M.; Meng, H. B.; Han, Y.; Jiang, Q. Y.; Wang, B. S.; Shi, X. F.; Zhang, W. S.; Zhang, L.; Zhang, R. F. RuCoO x nanofoam as a high-performance trifunctional electrocatalyst for rechargeable zinc-air batteries and water splitting. Nano Lett. 2021, 21, 9633–9641.

[132]

Liu, J. Y.; Meng, R.; Jian, P. M.; Jian, R. Q. CeO2 nanoparticle-decorated Co3O4 microspheres for selective oxidation of ethylbenzene with molecular oxygen under solvent- and additive-free conditions. ACS Sustain. Chem. Eng. 2020, 8, 16791–16802.

[133]

Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Efficient visible-light-driven CO2 methanation with self-regenerated oxygen vacancies in Co3O4/NiCo2O4 hetero-nanocages: Vacancy-mediated selective photocatalysis. ACS Catal. 2023, 13, 2502–2512.

[134]

Zhang, R. R.; Pan, L.; Guo, B. B.; Huang, Z. F.; Chen, Z. X.; Wang, L.; Zhang, X. W.; Guo, Z. Y.; Xu, W.; Loh, K. P. et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281.

[135]

Savita.; Dani, S.; Kumar, S.; Singh, F.; Vij, A.; Thakur, A. Probing the defects and trap distribution in MgAl2O4 nanocrystals through electron spin resonance and thermoluminescence. J. Phys. D: Appl. Phys. 2021, 54, 335303.

[136]

Savita.; Kumar, S.; Vij, A.; Thakur, A. Cr dopant induced tailoring of intrinsic defects and trap distribution in MgAl2O4 nanocrystals: Electron spin resonance and thermoluminescence. J. Phys. D: Appl. Phys. 2023, 56, 075301.

[137]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

[138]

Li, R. J.; Zheng, M.; Zhou, X.; Zhang, D.; Shi, Y.; Li, C. X.; Yang, M. Carbon vacancies in porous g-C3N4 nanosheets induced robust H2O2 production for highly efficient photocatalysis-self-Fenton system for metronidazole degradation. Chem. Eng. J. 2023, 464, 142584.

[139]

Sun, Y. M.; Ren, X.; Sun, S. N.; Liu, Z.; Xi, S. B.; Xu, Z. J. Engineering high-spin state cobalt cations in spinel zinc cobalt oxide for spin channel propagation and active site enhancement in water oxidation. Angew. Chem. 2021, 133, 14657–14665.

[140]

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

[141]

Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

[142]

Liu, J. Y.; Tang, H.; Jian, P. M.; Liu, B. Oxygen-vacancy defect engineering to boost the aerobic oxidation of limonene over Co3O4 nanocubes. Appl. Catal. B: Environ. 2023, 334, 122828.

[143]

Shan, J. Q.; Ye, C.; Chen, S. M.; Sun, T. L.; Jiao, Y.; Liu, L. M.; Zhu, C. Z.; Song, L.; Han, Y.; Jaroniec, M. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J. Am. Chem. Soc. 2021, 143, 5201–5211.

[144]

Ren, J.; Chi, H. Y.; Tan, L.; Peng, Y. K.; Li, G. C.; Li, M. M. J.; Zhao, Y. F.; Duan, X. Semi-quantitative determination of active sites in heterogeneous catalysts for photo/electrocatalysis. J. Mater. Chem. A 2023, 11, 2528–2543.

[145]

Wang, Z.; Henke, S.; Paulus, M.; Welle, A.; Fan, Z. Y.; Rodewald, K.; Rieger, B.; Fischer, R. A. Defect creation in surface-mounted metal-organic framework thin films. ACS Appl. Mater. Interfaces 2020, 12, 2655–2661.

[146]

Ye, S. H.; Zhang, Y.; Xiong, W.; Xu, T. T.; Liao, P.; Zhang, P. Y.; Ren, X. Z.; He, C. X.; Zheng, L. R.; Ouyang, X. P. et al. Construction of tetrahedral CoO4 vacancies for activating the high oxygen evolution activity of Co3− x O4− δ porous nanosheet arrays. Nanoscale 2020, 12, 11079–11087.

[147]

Tong, X. J.; Zhang, Z. W.; Fang, Z. Y.; Guo, J. H.; Zheng, Y.; Liang, X. L.; Liu, R. P.; Zhang, L. T.; Chen, W. PdMoCu trimetallenes for nitrate electroreduction to ammonia. J. Phys. Chem. C 2023, 127, 5262–5270.

[148]

Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

[149]

Zhou, Y.; Meng, Y. L.; Wang, X. Z.; Luo, J. B.; Xia, H. H.; Li, W. L.; Zhang, J. Enhancing electro-reduction of nitrite to ammonia by loading Co3O4 on CuO to construct elecrocatalytic dual-sites. Dalton Trans. 2023, 52, 3260–3264.

[150]

Liu, M.; Mao, Q. Q.; Shi, K. K.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Electroreduction of nitrate to ammonia on palladium-cobalt-oxygen nanowire arrays. ACS Appl. Mater. Interfaces 2022, 14, 13169–13176.

[151]

Xie, L. S.; Liu, Q.; Sun, S. J.; Hu, L.; Zhang, L. C.; Zhao, D. L.; Liu, Q.; Chen, J.; Li, J.; Ouyang, L. et al. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn2CoO4 nanoarray. ACS Appl. Mater. Interfaces 2022, 14, 33242–33247.

[152]

Li, J.; Zhao, D. L.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, Z. R.; Sun, S. J.; Luo, J. S.; Chen, Q. Y.; Li, T. S. et al. Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. J Colloid Interface Sci. 2023, 629, 805–812.

[153]

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.

[154]

Li, K.; Chen, C.; Bian, X. C.; Sun, T. H.; Jia, J. P. Electrolytic nitrate reduction using Co3O4 rod-like and sheet-like cathodes with the control of (220) facet exposure and Co2+/Co3+ ratio. Electrochim. Acta 2020, 362, 137121.

[155]

Wu, X.; Liu, Z. G.; Gao, T. Y.; Li, Z. Z.; Song, Z. H.; Tang, J.; Feng, F.; Qu, C. Y.; Yao, F. B.; Tang, C. J. Boosting electrocatalytic reduction of nitrate to ammonia over Co3O4 nanosheets with oxygen vacancies. Metals 2023, 13, 799.

[156]

Li, C.; Xu, R. Z.; Ma, S. X.; Xie, Y. H.; Qu, K. G.; Bao, H. F.; Cai, W. W.; Yang, Z. H. Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction. Chem. Eng. J. 2021, 415, 129018.

[157]

Deng, Z. Q.; Ma, C. Q.; Li, Z. R.; Luo, Y. S.; Zhang, L. C.; Sun, S. J.; Liu, Q.; Du, J.; Lu, Q. P.; Zheng, B. Z. et al. High-efficiency electrochemical nitrate reduction to ammonia on a Co3O4 nanoarray catalyst with cobalt vacancies. ACS Appl. Mater. Interfaces 2022, 14, 46595–46602.

[158]

Liu, D.; Qiao, L. L.; Chen, Y. Y.; Zhou, P. F.; Feng, J. X.; Leong, C. C.; Ng, K. W.; Peng, S. J.; Wang, S. P.; Ip, W. F. et al. Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Appl. Catal. B: Environ. 2023, 324, 122293.

[159]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Bi, X. J. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.

[160]

Niu, Z. D.; Fan, S. Y.; Li, X. Y.; Yang, J.; Wang, J. G.; Tao, Y. Y.; Chen, G. H. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chem. Eng. J. 2023, 451, 138890.

[161]

Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem. Catal. 2023, 3, 100477.

[162]

Niu, Z. D.; Fan, S. Y.; Li, X. Y.; Liu, Z. Y.; Wang, J.; Duan, J.; Tadé, M. O.; Liu, S. M. Facile tailoring of the electronic structure and the d-band center of copper-doped cobaltate for efficient nitrate electrochemical hydrogenation. ACS Appl. Mater. Interfaces 2022, 14, 35477–35484.

[163]

Duan, W. J.; Chen, Y. Y.; Ma, H. X.; Lee, J. F.; Lin, Y. J.; Feng, C. H. In situ reconstruction of metal oxide cathodes for ammonium generation from high-strength nitrate wastewater: Elucidating the role of the substrate in the performance of Co3O4− x . Environ. Sci. Technol. 2023, 57, 3893–3904.

[164]

Carvajal, D.; Arcas, R.; Mesa, C. A.; Giménez, S.; Fabregat-Santiago, F.; Mas-Marzá, E. Role of Pd in the electrochemical hydrogenation of nitrobenzene using CuPd electrodes. Adv. Sustain. Syst. 2022, 6, 2100367.

[165]

Moya, A.; Creus, J.; Romero, N.; Alemán, J.; Solans-Monfort, X.; Philippot, K.; García-Antón, J.; Sala, X.; Mas-Ballesté, R. Organocatalytic vs. Ru-based electrochemical hydrogenation of nitrobenzene in competition with the hydrogen evolution reaction. Dalton Trans. 2020, 49, 6446–6456.

[166]

Wu, S. T.; Huang, X.; Zhang, H. L.; Wei, Z. D.; Wang, M. Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte. ACS Catal. 2022, 12, 58–65.

[167]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

[168]

Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243.

[169]

Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

[170]

Tekalgne, M. A.; Do, H. H.; Hasani, A.; Van Le, Q.; Jang, H. W.; Ahn, S. H.; Kim, S. Y. Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater. Today Adv. 2020, 5, 100038.

[171]

Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202207252.

[172]

Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 2014, 5, 4470.

[173]

Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. 2016, 128, 708–712.

[174]

Yang, S. C.; Su, W. N.; Rick, J.; Lin, S. D.; Liu, J. Y.; Pan, C. J.; Lee, J. F.; Hwang, B. J. Oxygen vacancy engineering of cerium oxides for carbon dioxide capture and reduction. ChemSusChem 2013, 6, 1326–1329.

[175]

Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2− x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904–7912.

[176]

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

[177]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[178]

Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

[179]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[180]

Sekar, P.; Calvillo, L.; Tubaro, C.; Baron, M.; Pokle, A.; Carraro, F.; Martucci, A.; Agnoli, S. Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catal. 2017, 7, 7695–7703.

[181]

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

[182]

Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W. K.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed. 2022, 61, e202203063.

[183]

Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

[184]

Wang, Y.; Li, J.; Wei, Z. D. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209.

[185]

Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

[186]

Zhang, Y. Q.; Li, M.; Hua, B.; Wang, Y.; Sun, Y. F.; Luo, J. L. A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B: Environ. 2018, 236, 413–419.

[187]

Xu, Y. J.; Sumboja, A.; Zong, Y.; Darr, J. A. Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc-air batteries: Examining the effects of compositional tuning on OER and ORR activity. Catal. Sci. Technol. 2020, 10, 2173–2182.

[188]

Si, C. H.; Zhang, Y. L.; Zhang, C. Q.; Gao, H.; Ma, W. S.; Lv, L. F.; Zhang, Z. H. Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochim. Acta 2017, 245, 829–838.

[189]

Lu, Y. T.; Chien, Y. J.; Liu, C. F.; You, T. H.; Hu, C. C. Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M0.1Ni0.9Co2O4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc-air batteries. J. Mater. Chem. A 2017, 5, 21016–21026.

[190]

Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. 2017, 129, 15173–15177.

[191]

Fan, H.; Yang, L. J.; Wang, Y.; Zhang, X. L.; Wu, Q. S.; Che, R. C.; Liu, M.; Wu, Q.; Wang, X. Z.; Hu, Z. Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci. Bull. 2017, 62, 1365–1372.

[192]

Zhang, T. W.; Li, Z. F.; Wang, L. K.; Sun, P.; Zhang, Z. X.; Wang, S. W. Spinel MnCo2O4 nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for the oxygen reduction reaction. ChemSusChem 2018, 11, 2730–2736.

[193]

Wang, Q.; Xue, Y. J.; Sun, S. S.; Yan, S. S.; Miao, H.; Liu, Z. P. Facile synthesis of ternary spinel Co-Mn-Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. J. Power Sources 2019, 435, 226761.

[194]

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

[195]

Zhou, Y.; Sun, S. N.; Xi, S. B.; Duan, Y.; Sritharan, T.; Du, Y. H.; Xu, Z. J. Superexchange effects on oxygen reduction activity of edge-sharing [Co x Mn1− x O6] octahedra in spinel oxide. Adv. Mater. 2018, 30, 1705407.

[196]

Liu, J. J.; Liu, J. Z.; Song, W. W.; Wang, F.; Song, Y. The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2014, 2, 17477–17488.

[197]

Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

[198]

Huang, K.; Liu, J. C.; Wang, L.; Chang, G.; Wang, R. Y.; Lei, M.; Wang, Y. G.; He, Y. B. Mixed valence CoCuMnO x spinel nanoparticles by sacrificial template method with enhanced ORR performance. Appl. Surf. Sci. 2019, 487, 1145–1151.

[199]

Kim, J.; Ko, W.; Yoo, J. M.; Paidi, V. K.; Jang, H. Y.; Shepit, M.; Lee, J.; Chang, H.; Lee, H. S.; Jo, J. et al. Structural insights into multi-metal spinel oxide nanoparticles for boosting oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2107868.

[200]

Yang, Y.; Xiong, Y.; Holtz, M. E.; Feng, X. R.; Zeng, R.; Chen, G.; DiSalvo, F. J.; Muller, D. A.; Abruña, H. D. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc. Natl. Acad Sci. USA 2019, 116, 24425–24432.

[201]

Wang, H.; Liu, R. P.; Li, Y. T.; Lü, X. J.; Wang, Q.; Zhao, S. Q.; Yuan, K. J.; Cui, Z. M.; Li, X.; Xin, S. et al. Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2018, 2, 337–348.

[202]

Mu, C.; Mao, J.; Guo, J. X.; Guo, Q. J.; Li, Z. Q.; Qin, W. J.; Hu, Z. P.; Davey, K.; Ling, T.; Qiao, S. Z. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 2020, 32, 1907168.

[203]

Chen, S.; Huang, D. M.; Liu, D. Y.; Sun, H. Z.; Yan, W. J.; Wang, J. C.; Dong, M.; Tong, X. L.; Fan, W. B. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl. Catal. B: Environ. 2021, 291, 120065.

[204]

Yuan, H.; Li, J. T.; Yang, W.; Zhuang, Z. C.; Zhao, Y.; He, L.; Xu, L.; Liao, X. B.; Zhu, R. Q.; Mai, L. Q. Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4/hollow carbon spheres. ACS Appl. Mater. Interfaces 2018, 10, 16410–16417.

[205]

Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39.

[206]

Wahl, S.; El-Refaei, S. M.; Buzanich, A. G.; Amsalem, P.; Lee, K. S.; Koch, N.; Doublet, M. L.; Pinna, N. Zn0.35Co0.65O—A stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure. Adv. Energy Mater. 2019, 9, 1900328.

[207]

Menezes, P. W.; Indra, A.; Bergmann, A.; Chernev, P.; Walter, C.; Dau, H.; Strasser, P.; Driess, M. Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt-zinc oxide catalysts for efficient oxidation of water. J. Mater. Chem. A 2016, 4, 10014–10022.

[208]

Zhang, L. L.; Hu, Y. J.; Jiang, K.; Li, K.; Liu, Y. Q.; Wang, D.; Ye, Y. Y. The role of sulfur doping in determining the performance of Fe/N-C based electrocatalysts for oxygen reduction reactions. J. Electrochem. Soc. 2021, 168, 054523.

[209]

Liu, S.; Zhang, B. S.; Cao, Y.; Wang, H. L.; Zhang, Y. M.; Zhang, S. J.; Li, Y. T.; Gong, H. C.; Liu, S. Z.; Yang, Z. X. et al. Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc-air batteries. ACS Energy Lett. 2023, 8, 159–168.

[210]

Zhang, Z.; Tan, G. Y.; Kumar, A.; Liu, H.; Yang, X.; Gao, W. Q.; Bai, L.; Chang, H. Q.; Kuang, Y.; Li, Y. P. et al. First-principles study of oxygen evolution on Co3O4 with short-range ordered Ir doping. Mol. Catal. 2023, 535, 112852.

[211]

Xiong, Y.; Yang, Y.; Feng, X. R.; DiSalvo, F. J.; Abruña, H. D. A strategy for increasing the efficiency of the oxygen reduction reaction in Mn-doped cobalt ferrites. J. Am. Chem. Soc. 2019, 141, 4412–4421.

[212]

Lu, Q.; Guo, Y. N.; Mao, P.; Liao, K. M.; Zou, X. H.; Dai, J.; Tan, P.; Ran, R.; Zhou, W.; Ni, M. et al. Rich atomic interfaces between sub-1 nm RuO x clusters and porous Co3O4 nanosheets boost oxygen electrocatalysis bifunctionality for advanced Zn-air batteries. Energy Storage Mater. 2020, 32, 20–29.

[213]

Chen, X. H.; Li, T.; Li, X. L.; Lei, J. L.; Li, N. B.; Luo, H. Q. Oxyanion-coordinated Co-based catalysts for optimized hydrogen evolution: The feedback of adsorbed anions to the catalytic activity and mechanism. ACS Catal. 2023, 13, 6721–6729.

[214]

Xie, X.; Fan, Y. X.; Tian, W. Y.; Zhang, M.; Cai, J. L.; Zhang, X. G.; Ding, J.; Liu, Y. S.; Lu, S. Y. Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction. J. Energy Chem. 2023, 83, 150–157.

[215]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[216]

Zhang, H.; Li, W. Q.; Feng, X.; Zhu, L.; Fang, Q. Z.; Li, S.; Wang, L. Y.; Li, Z. J.; Kou, Z. K. A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis. J. Colloid Interface Sci. 2022, 607, 281–289.

[217]

Ma, S.; Yang, P. Y.; Chen, J. L.; Wu, Z. H.; Li, X. Q.; Zhang, H. NiCu alloys anchored Co3O4 nanowire arrays as efficient hydrogen evolution electrocatalysts in alkaline and neutral media. J. Colloid Interface Sci. 2023, 642, 604–611.

[218]

Wu, J.; Wang, X.; Zheng, W. H.; Sun, Y.; Xie, Y.; Ma, K. K.; Zhang, Z.; Liao, Q. L.; Tian, Z.; Kang, Z. et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. J. Am. Chem. Soc. 2022, 144, 19163–19172.

[219]

Pawar, A. A.; Bandal, H. A.; Kim, H. Spinel type Fe3O4 polyhedron supported on nickel foam as an electrocatalyst for water oxidation reaction. J. Alloys Compd. 2021, 863, 158742.

[220]

Zhang, H. X.; Zhang, J. H.; Li, Y. H.; Jiang, H. B.; Jiang, H.; Li, C. Z. Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 13506–13510.

[221]

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

[222]

Jin, J.; Yin, J.; Liu, H. B.; Huang, B. L.; Hu, Y.; Zhang, H.; Sun, M. Z.; Peng, Y.; Xi, P. X.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 14117–14123.

[223]

Wei, J. X.; Xiao, K.; Chen, Y. X.; Guo, X. P.; Huang, B. L.; Liu, Z. Q. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ. Sci. 2022, 15, 4592–4600

[224]

Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

[225]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[226]

Li, J. T.; Chu, D.; Baker, D. R.; Dong, H.; Jiang, R. Z.; Tran, D. T. Distorted inverse spinel nickel cobaltite grown on a MoS2 plate for significantly improved water splitting activity. Chem. Mater. 2019, 31, 7590–7600.

[227]

Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.

[228]

Wang, J.; Nan, H. F.; Tian, Y.; Chu, K. FeMo3S4 for efficient nitrogen reduction reaction. ACS Sustain. Chem. Eng. 2020, 8, 12733–12740.

[229]

Liu, C. W.; Tian, A.; Li, Q. Y.; Wang, T. Y.; Qin, G. W.; Li, S.; Sun, C. H. 2D, metal-free electrocatalysts for the nitrogen reduction reaction. Adv. Funct. Mater. 2023, 33, 2210759.

[230]

Wei, Z. X.; Zhang, Y. F.; Wang, S. Y.; Wang, C. Y.; Ma, J. M. Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 13790–13796.

[231]

Li, X. H.; Xue, C.; Zhou, X. R.; Wei, Y. A.; Yu, Y. J.; Fu, Y.; Liu, W. J.; Lan, Y. Q. Polyoxometalate-derived bimetallic catalysts for the nitrogen reduction reaction. Mater. Chem. Front. 2023, 7, 720–727.

[232]

Wen, J.; Chang, H. H.; Huang, T.; Hossain, M.; Liu, Z. C.; Sun, H. D.; Zhu, Y. S.; Chen, Y. H.; Huang, Q. H.; Wu, Y. P. A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochim. Acta 2021, 367, 137421.

[233]

Luo, S. J.; Li, X. M.; Zhang, B. H.; Luo, Z. L.; Luo, M. MOF-derived Co3O4@NC with core–shell structures for N2 electrochemical reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 26891–26897.

[234]

Wang, X. X.; Zhao, L.; Zhao, R.; Zhou, Y. X.; Wang, S. Y.; Chi, X. Y.; Xiong, Y. Y.; Yao, Y. B.; Zhang, K. X.; Li, Y. J. et al. Enhanced electrocatalytic nitrogen reduction inspired by a lightning rod effect on urchin-like Co3O4 catalyst. Chem. Eng. J. 2022, 450, 138316.

[235]

Li, P. S.; Zhou, Z. A.; Wang, Q.; Guo, M.; Chen, S. W.; Low, J. X.; Long, R.; Liu, W.; Ding, P. R.; Wu, Y. Y. et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439.

[236]

Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.

[237]

Zhang, G.; Ji, Q. H.; Zhang, K.; Chen, Y.; Li, Z. H.; Liu, H. J.; Li, J. H.; Qu, J. H. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation. Nano Energy 2019, 59, 10–16.

[238]

Lai, F. L.; Feng, J. R.; Ye, X. B.; Zong, W.; He, G. J.; Yang, C.; Wang, W.; Miao, Y. E.; Pan, B. C.; Yan, W. S. et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652–1659.

[239]

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

[240]

Guo, C. Y.; Liu, X. J.; Gao, L. F.; Kuang, X.; Ren, X.; Ma, X. J.; Zhao, M. Z.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl. Catal. B: Environ. 2020, 263, 118296.

[241]

Lee, J.; Kumar, A.; Kim, M. G.; Yang, T.; Shao, X. D.; Liu, X. H.; Liu, Y.; Hong, Y.; Jadhav, A. R.; Liang, M. F. et al. Single-metal-atom dopants increase the Lewis acidity of metal oxides and promote nitrogen fixation. ACS Energy Lett. 2021, 6, 4299–4308.

[242]

Wang, M. F.; Liu, S. S.; Ji, H. Q.; Liu, J.; Yan, C. L.; Qian, T. Unveiling the essential nature of Lewis basicity in thermodynamically and dynamically promoted nitrogen fixation. Adv. Funct. Mater. 2020, 30, 2001244.

[243]

Yang, H. D.; Liu, Y.; Luo, S.; Zhao, Z. M.; Wang, X.; Luo, Y. T.; Wang, Z. X.; Jin, J.; Ma, J. T. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal. 2017, 7, 5557–5567

[244]

Jiang, Y. Z.; Wang, M. F.; Zhang, L. F.; Liu, S. S.; Cao, Y. F.; Qian, S. Y.; Cheng, Y.; Xu, X. N.; Yan, C. L.; Qian, T. Distorted spinel ferrite heterostructure triggered by alkaline earth metal substitution facilitates nitrogen localization and electrocatalytic reduction to ammonia. Chem. Eng. J. 2022, 450, 138226.

Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2023
Revised: 07 November 2023
Accepted: 15 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 22272047, 21905088, and 22102155), the China Postdoctoral Science Foundation (Nos. 2021M692909 and 2022T150587), and the Provincial Natural Science Foundation of Hunan (No. 2022JJ10006).

Return