AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell

Yumei Ma1,§Lijie Zhang2,§Kang Zhu2Binze Zhang2Ranran Peng2Changrong Xia2( )Ling Huang1( )
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

§ Yumei Ma and Lijie Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

In3+ doping effectively reduces the oxygen vacancy formation energy, generates more oxygen vacancies, and improves the oxygen transport performance. The maximum power density of SFMIn0.1 cells reaches 0.92 and 1.47 W∙cm−2 at 750 and 800 °C, respectively.

Abstract

Promoting the oxygen reduction reaction (ORR) is critical for commercialization of intermediate-temperature solid oxide fuel cells (IT-SOFCs), where Sr2Fe1.5Mo0.5O6−δ (SFM) is a promising cathode by working as a mixed ionic and electronic conductor. In this work, doping of In3+ greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr2Fe1.5Mo0.5−xInxO6−δ (SFMInx), and thus effectively promotes the ORR performance. As a typical example, SFMIn0.1 reduces the polarization resistance (Rp) from 0.089 to 0.046 Ω∙cm2 at 800 °C, which is superior to those doped with other metal elements. In addition, SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm−2 at 800 °C with humidified H2 as the fuel, indicating that In3+ doping at the Mo site can effectively improve the performance of SOFC cathode material.

Electronic Supplementary Material

Download File(s)
12274_2023_6338_MOESM1_ESM.pdf (4.9 MB)

References

[1]

Zhang, S. W.; Wan, Y. H.; Xu, Z. Q.; Xue, S. S.; Zhang, L. J.; Zhang, B. Z.; Xia, C. R. Bismuth doped La0.75Sr0.25Cr0.5Mn0.5O3− δ perovskite as a novel redox-stable efficient anode for solid oxide fuel cells. J. Mater. Chem. A 2020, 8, 11553–11563.

[2]

Zhang, B. Z.; Wan, Y. H.; Hua, Z. H.; Tang, K. B.; Xia, C. R. Tungsten-doped PrBaFe2O5+ δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. ACS Appl. Energy Mater. 2021, 4, 8401–8409.

[3]

Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; Mcevoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27.

[4]

Gou, M. L.; Ren, R. Z.; Sun, W.; Xu, C. M.; Meng, X. G.; Wang, Z. H.; Qiao, J. S.; Sun, K. N. Nb-doped Sr2Fe1.5Mo0.5O6− δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells. Ceram. Int. 2019, 45, 15696–15704.

[5]

Bellino, M. G.; Sacanell, J. G.; Lamas, D. G.; Leyva, A. G.; Walsöe de Reca, N. E. High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 2007, 129, 3066–3067.

[6]

Zhang, L. H.; Sun, W.; Xu, C. M.; Ren, R. Z.; Yang, X. X.; Qiao, J. S.; Wang, Z. H.; Sun, K. N. Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 14091–14098.

[7]
Ding, H. P.; Zhou, D. S.; Liu, S.; Wu, W.; Yang, Y. T.; Yang, Y. C.; Tao, Z. T. Electricity generation in dry methane by a durable ceramic fuel cell with high-performing and coking-resistant layered perovskite anode. Appl. Energy 2019 , 233–234, 37–43.
[8]
Yu, X. D.; Wang, Z. H.; Ren, R. Z.; Ma, M. J.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N. In situ self-reconstructed nanoheterostructure catalysts for promoting oxygen reduction reaction. ACS Energy Lett. 2022 , 7, 2961–2969.
[9]

Shen, L. Y.; Du, Z. H.; Zhang, Y.; Dong, X.; Zhao, H. L. Medium-Entropy perovskites Sr(Fe α Ti β Co γ Mn ζ )O3− δ as promising cathodes for intermediate temperature solid oxide fuel cell. Appl. Catal. B: Environ. 2021, 295, 120264.

[10]

Wang, S. B.; Xu, J. S.; Wu, M.; Song, Z. Y.; Wang, L.; Zhang, L. L.; Yang, J.; Long, W.; Zhang, L. Cobalt-free perovskite cathode BaFe0.9Nb0.1O3− δ for intermediate-temperature solid oxide fuel cell. J. Alloys Compd. 2021, 872, 159701.

[11]

Hashim, S. S.; Liang, F. L.; Zhou, W.; Sunarso, J. Cobalt-free perovskite cathodes for solid oxide fuel cells. ChemElectroChem 2019, 6, 3549–3569.

[12]

Li, H.; Lü, Z. Highly active and stable tin-doped perovskite-type oxides as cathode materials for solid oxide fuel cells. Electrochim. Acta 2020, 361, 137054.

[13]

Zhang, B. Z.; Zhang, S. W.; Han, H. R.; Tang, K. B.; Xia, C. R. Cobalt-free double perovskite oxide as a promising cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2023, 15, 8253–8262.

[14]

Zhang, B. Z.; Zhang, S. W.; Zhang, Z.; Tang, K. B.; Xia, C. R. Metal-supported solid oxide electrolysis cell for direct CO2 electrolysis using stainless steel based cathode. J. Power Sources 2023, 556, 232467.

[15]

Pan, X.; Wang, Z. B.; He, B. B.; Wang, S. R.; Wu, X. J.; Xia, C. R. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. Int. J. Hydrogen Energy 2013, 38, 4108–4115.

[16]

Dai, N. N.; Feng, J.; Wang, Z. H.; Jiang, T. Z.; Sun, W.; Qiao, J. S.; Sun, K. N. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5− x Ni x Mo0.5O6− δ ( x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J. Mater. Chem. A 2013, 1, 14147–14153.

[17]

Gu, L. N.; Meng, G. Y. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature. Mater. Res. Bull. 2008, 43, 1555–1561.

[18]

Wang, Y.; Zhang, L.; Xia, C. R. Enhancing oxygen surface exchange coefficients of strontium-doped lanthanum manganates with electrolytes. Int. J. Hydrogen Energy 2012, 37, 2182–2186.

[19]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

[20]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[21]

Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097.

[22]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[23]

Muñoz-García, A. B.; Bugaris, D. E.; Pavone, M.; Hodges, J. P.; Huq, A.; Chen, F. L.; zur Loye, H. C.; Carter, E. A. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6− δ , an electrode material for symmetric solid oxide fuel cells. J. Am. Chem. Soc. 2012, 134, 6826–6833.

[24]

Mastrikov, Y. A.; Merkle, R.; Kotomin, E. A.; Kuklja, M. M.; Maier, J. Formation and migration of oxygen vacancies in La1− x Sr x Co1– y Fe y O3− δ perovskites: Insight from ab initio calculations and comparison with Ba1− x Sr x Co1− y Fe y O3− δ . Phys. Chem. Chem. Phys. 2013, 15, 911–918.

[25]

Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658.

[26]

Liu, Q.; Bugaris, D. E.; Xiao, G. L.; Chmara, M.; Ma, S. G.; zur Loye, H. C.; Amiridis, M. D.; Chen, F. L. Sr2Fe1.5Mo0.5O6− δ as a regenerative anode for solid oxide fuel cells. J. Power Sources 2011, 196, 9148–9153.

[27]

Gou, Y. J.; Li, G. D.; Ren, R. Z.; Xu, C. M.; Qiao, J. S.; Sun, W.; Sun, K. N.; Wang, Z. H. Pr-doping motivating the phase transformation of the BaFeO3− δ perovskite as a high-performance solid oxide fuel cell cathode. ACS Appl. Mater. Interfaces 2021, 13, 20174–20184.

[28]

Zhang, S. W.; Zhu, K.; Hu, X. Y.; Peng, R. R.; Xia, C. R. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6− δ perovskite as a ceramic anode for solid oxide fuel cells. J. Mater. Chem. A 2021, 9, 24336–24347.

[29]

Yang, Y.; Shi, N.; Xie, Y.; Li, X. Y.; Hu, X. Y.; Zhu, K.; Huan, D. M.; Peng, R. R.; Xia, C. R.; Lu, Y. L. K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells. Electrochim. Acta 2021, 389, 138453.

[30]

Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system. Appl. Catal. A: Gen. 2020, 602, 117697.

[31]

Meng, J. L.; Liu, X. J.; Han, L.; Bai, Y. J.; Yao, C. G.; Deng, X. L.; Niu, X. D.; Wu, X. J.; Meng, J. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5– x Ta x O6– δ (0.0 ≤ x ≤ 0.15) for Solid State Fuel Cell. J. Power Sources 2014, 247, 845–851.

[32]

Shao, Z. P.; Xiong, G. X.; Tong, J. H.; Dong, H.; Yang, W. S. Ba effect in doped Sr(Co0.8Fe0.2)O3− δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 2001, 25, 419–429.

[33]

Sun, W.; Li, P. Q.; Xu, C. M.; Dong, L. K.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells. J. Power Sources 2017, 343, 237–245.

[34]

Liu, H. Y.; Zhu, X. F.; Cheng, M. J.; Cong, Y.; Yang, W. S. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxidefuel cells. Chem. Commun. 2011, 47, 2378–2380.

[35]

Bouwmeester, H. J. M.; Den Otter, M. W.; Boukamp, B. A. Oxygen transport in La0.6Sr0.4Co1− y Fe y O3− δ . J. Solid State Electrochem. 2004, 8, 599–605.

[36]

ten Elshof, J. E.; Lankhorst, M. H. R.; Bouwmeester, H. J. M. Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3− δ . Solid State Ionics 1997, 99, 15–22.

[37]

Yasuda, I.; Hikita, T. Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 1994, 141, 1268–1273.

[38]

Zhang, S. W.; Jiang, Y. N.; Han, H. R.; Li, Y. H.; Xia, C. R. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells. ACS Appl. Mater. Interfaces 2022, 14, 28854–28864.

[39]

Liu, Q.; Dong, X. H.; Xiao, G. L.; Zhao, F.; Chen, F. L. A novel electrode material for symmetrical SOFCs. Adv. Mater. 2010, 22, 5478–5482.

[40]

Hayd, J.; Yokokawa, H.; Ivers-Tiffée, E. Hetero-interfaces at nanoscaled (La,Sr)CoO3− δ thin-film cathodes enhancing oxygen surface-exchange properties. J. Electrochem. Soc. 2013, 160, F351–F359.

[41]
Zhang, Y. X.; Chen, Y.; Chen, F. L. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy. J. Power Sources 2015 , 277, 277–285.
[42]

Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y. High performance of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. J. Power Sources 2013, 226, 354–358.

[43]

Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.

[44]
Adler, S. B.; Chen, X. Y.; Wilson, J. R. Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces. J. Catal. 2007 , 245, 91–109.
[45]

Osinkin, D. A.; Beresnev, S. M.; Khodimchuk, A. V.; Korzun, I. V.; Lobachevskaya, N. I.; Suntsov, A. Y. Functional properties and electrochemical performance of Ca-doped Sr2− x Ca x Fe1.5Mo0.5O6− δ as anode for solid oxide fuel cells. J. Solid State Electrochem. 2019, 23, 627–634.

Nano Research
Pages 407-415
Cite this article:
Ma Y, Zhang L, Zhu K, et al. In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell. Nano Research, 2024, 17(1): 407-415. https://doi.org/10.1007/s12274-023-6338-y
Topics:

598

Views

6

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 September 2023
Revised: 07 November 2023
Accepted: 07 November 2023
Published: 29 December 2023
© Tsinghua University Press 2023
Return