Journal Home > Volume 17 , Issue 5

Effective mineralization of biological structures poses a significant challenge in hard tissue engineering as it necessitates overcoming geometric complexities and multistep biomineralization processes. In this regard, we propose “mineral-in-shell nanoarchitectonics”, inspired by the nanostructure of matrix vesicles, which can influence multiple mineralization pathways. Our nanostructural design empowers mineral precursors with tailorable properties through encapsulating amorphous calcium phosphate within a multifunctional tannic acid (TA) and silk fibroin (SF) nanoshell. The bioinspired nanosystem facilitates efficient recruitment of mineral precursors throughout the dentin structures, followed by large-scale intradentinal mineralization both in vitro and in vivo, which provides persistent protection against external stimuli. Theoretical simulations combined with experimental studies attribute the success of intradentinal mineralization to the TA-SF nanoshell, which exhibits a strong affinity for the dentin structure, stabilizing amorphous precursors and thereby facilitating concomitant mineral formation. Overall, this bioinspired mineral-in-shell nanoarchitectonics shows a promising prospect for hard tissue repair and serves as a blueprint for next-generation biomineralization-associated materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bioinspired mineral-in-shell nanoarchitectonics: Functional empowerment of mineral precursors for guiding intradentinal mineralization

Show Author's information Xiaoran Zheng1,§Yang Liu1,§Mingjing Li1Yuyan Li2Wanshan Gao2Rongmin Qiu2Jiaqi Xing1Jiaojiao Yang3Yantao Chen4Xinyuan Xu1Mingming Ding1Jun Luo1( )Jianshu Li1,3,5( )
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
College of Stomatology, Hospital of Stomatology Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Med-X Center for Material, Sichuan University, Chengdu 610041, China

§ Xiaoran Zheng and Yang Liu contributed equally to this work.

Abstract

Effective mineralization of biological structures poses a significant challenge in hard tissue engineering as it necessitates overcoming geometric complexities and multistep biomineralization processes. In this regard, we propose “mineral-in-shell nanoarchitectonics”, inspired by the nanostructure of matrix vesicles, which can influence multiple mineralization pathways. Our nanostructural design empowers mineral precursors with tailorable properties through encapsulating amorphous calcium phosphate within a multifunctional tannic acid (TA) and silk fibroin (SF) nanoshell. The bioinspired nanosystem facilitates efficient recruitment of mineral precursors throughout the dentin structures, followed by large-scale intradentinal mineralization both in vitro and in vivo, which provides persistent protection against external stimuli. Theoretical simulations combined with experimental studies attribute the success of intradentinal mineralization to the TA-SF nanoshell, which exhibits a strong affinity for the dentin structure, stabilizing amorphous precursors and thereby facilitating concomitant mineral formation. Overall, this bioinspired mineral-in-shell nanoarchitectonics shows a promising prospect for hard tissue repair and serves as a blueprint for next-generation biomineralization-associated materials.

Keywords: self-assembly, nanohybrids, biomineralization, mineral-in-shell, dentinal tubule occlusion, dental hypersensitivity

References(52)

[1]

Eder, M.; Amini, S.; Fratzl, P. Biological composites-complex structures for functional diversity. Science 2018, 362, 543–547.

[2]

Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Biomineralization: From material tactics to biological strategy. Adv. Mater. 2017, 29, 1605903.

[3]

Fang, P. A.; Conway, J. F.; Margolis, H. C.; Simmer, J. P.; Beniash, E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl. Acad. Sci. USA 2011, 108, 14097–14102.

[4]

Krajina, B. A.; Proctor, A. C.; Schoen, A. P.; Spakowitz, A. J.; Heilshorn, S. C. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature. Progr. Mater. Sci. 2018, 91, 1–23.

[5]

Reznikov, N.; Steele, J. A. M.; Fratzl, P.; Stevens, M. M. A materials science vision of extracellular matrix mineralization. Nat. Rev. Mater. 2016, 1, 16041.

[6]

De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

[7]

Wang, C. Y.; Jiao, K.; Yan, J. F.; Wan, M. C.; Wan, Q. Q.; Breschi, L.; Chen, J. H.; Tay, F. R.; Niu, L. N. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progr. Mater. Sci. 2021, 116, 100712.

[8]

Li, M. J.; Zheng, X. R.; Dong, Z. Y.; Zhang, Y. Y.; Wu, W.; Chen, X. Y.; Ding, C. M.; Yang, J. J.; Luo, J.; Li, J. S. Ectopic mineralization-inspired cell membrane-based matrix vesicle analogs for in-depth remineralization of dentinal tubules for treating dentin hypersensitivity. Nano Res. 2023, 16, 7269–7279.

[9]

Zhou, Z. H.; Li, J. C.; Wang, Z.; Zhang, H. L.; Wang, Y. R.; Shen, D. N.; Wu, Z. F.; Shen, M. J.; Pan, H. H.; Wang, Q. et al. In-depth occlusion of dentinal tubules and rapid remineralization of demineralized dentin induced by polyelectrolyte-calcium complexes. Adv. Healthc. Mater. 2023, 12, 2300100.

[10]

Ansari, S.; De Wildt, B. W. M.; Vis, M. A. M.; De Korte, C. E.; Ito, K.; Hofmann, S.; Yuana, Y. Matrix vesicles: Role in bone mineralization and potential use as therapeutics. Pharmaceuticals (Basel) 2021, 14, 289.

[11]

Boonrungsiman, S.; Gentleman, E.; Carzaniga, R.; Evans, N. D.; McComb, D. W.; Porter, A. E.; Stevens, M. M. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl. Acad. Sci. USA 2012, 109, 14170–14175.

[12]

Mahamid, J.; Sharir, A.; Addadi, L.; Weiner, S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc. Natl. Acad. Sci. USA 2008, 105, 12748–12753.

[13]

Vidavsky, N.; Addadi, S.; Schertel, A.; Ben-Ezra, D.; Shpigel, M.; Addadi, L.; Weiner, S. Calcium transport into the cells of the sea urchin larva in relation to spicule formation. Proc. Natl. Acad. Sci. USA 2016, 113, 12637–12642.

[14]

Iwayama, T.; Okada, T.; Ueda, T.; Tomita, K.; Matsumoto, S.; Takedachi, M.; Wakisaka, S.; Noda, T.; Ogura, T.; Okano, T. et al. Osteoblastic lysosome plays a central role in mineralization. Sci. Adv. 2019, 5, eaax0672.

[15]

Kahil, K.; Varsano, N.; Sorrentino, A.; Pereiro, E.; Rez, P.; Weiner, S.; Addadi, L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc. Natl. Acad. Sci. USA 2020, 117, 30957–30965.

[16]

Pei, D. D.; Sun, J. L.; Zhu, C. H.; Tian, F. C.; Jiao, K.; Anderson, M. R.; Yiu, C.; Huang, C.; Jin, C. X.; Bergeron, B. E. et al. Contribution of mitophagy to cell-mediated mineralization: Revisiting a 50-year-old conundrum. Adv. Sci. (Weinh.) 2018, 5, 1800873.

[17]

Rahmati, M.; Stötzel, S.; El Khassawna, T.; Mao, C. Y.; Ali, A.; Vaughan, J. C.; Iskhahova, K.; Florian Wieland, D. C.; Cantalapiedra, A. G.; Perale, G. et al. Intrinsically disordered peptides enhance regenerative capacities of bone composite xenografts. Mater. Today 2022, 52, 63–79

[18]

Xu, X. Y.; Chen, X. Y.; Li, J. S. Natural protein bioinspired materials for regeneration of hard tissues. J. Mater. Chem. B 2020, 8, 2199–2215.

[19]

Chang, R.; Liu, Y. J.; Zhang, Y. L.; Zhang, S. Y.; Han, B. B.; Chen, F.; Chen, Y. X. Phosphorylated and phosphonated low-complexity protein segments for biomimetic mineralization and repair of tooth enamel. Adv. Sci. (Weinh.) 2022, 9, 2103829.

[20]

Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E. Y.; Yu, H. D.; Zhang, Y. W. et al. Structures, mechanical properties and applications of silk fibroin materials. Progr. Polym. Sci. 2015, 46, 86–110.

[21]

Akkineni, S.; Zhu, C.; Chen, J. J.; Song, M.; Hoff, S. E.; Bonde, J.; Tao, J. H.; Heinz, H.; Habelitz, S.; De Yoreo, J. J. Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites. Proc. Natl. Acad. Sci. USA 2022, 119, e2106965119.

[22]

Rao, A.; Drechsler, M.; Schiller, S.; Scheffner, M.; Gebauer, D.; Cölfen, H. Stabilization of mineral precursors by intrinsically disordered proteins. Adv. Funct. Mater. 2018, 28, 1802063.

[23]

Zhao, Z. M.; Pan, D. C.; Qi, Q. M.; Kim, J.; Kapate, N.; Sun, T.; Shields, C. W. T.; Wang, L. L. W.; Wu, D.; Kwon, C. J. et al. Engineering of living cells with polyphenol-functionalized biologically active nanocomplexes. Adv. Mater. 2020, 32, 2003492.

[24]

Elsharkawy, S.; Al-Jawad, M.; Pantano, M. F.; Tejeda-Montes, E.; Mehta, K.; Jamal, H.; Agarwal, S.; Shuturminska, K.; Rice, A.; Tarakina, N. V. et al. Protein disorder-order interplay to guide the growth of hierarchical mineralized structures. Nat. Commun. 2018, 9, 2145.

[25]

Chen, Z.; Duan, Y. Y.; Shan, S. Z.; Sun, K. D.; Wang, G.; Shao, C. Y.; Tang, Z. H.; Xu, Z. K.; Zhou, Y. Y.; Chen, Z. et al. Deep and compact dentinal tubule occlusion via biomimetic mineralization and mineral overgrowth. Nanoscale 2022, 14, 642–652.

[26]

He, J. K.; Yang, J. H.; Li, M.; Li, Y. C.; Pang, Y. Y.; Deng, J. Y.; Zhang, X.; Liu, W. G. Polyzwitterion manipulates remineralization and antibiofilm functions against dental demineralization. ACS Nano 2022, 16, 3119–3134.

[27]

Rahim, M. A.; Kristufek, S. L.; Pan, S. J.; Richardson, J. J.; Caruso, F. Phenolic building blocks for the assembly of functional materials. Angew. Chem., Int. Ed. 2019, 58, 1904–1927.

[28]

Han, Y. Y.; Lin, Z. X.; Zhou, J. J.; Yun, G.; Guo, R.; Richardson, J. J.; Caruso, F. Polyphenol-mediated assembly of proteins for engineering functional materials. Angew. Chem., Int. Ed. 2020, 59, 15618–15625.

[29]

Chen, J. Q.; Li, J. H.; Zhou, J. J.; Lin, Z.; Cavalieri, F.; Czuba-Wojnilowicz, E.; Hu, Y. J.; Glab, A.; Ju, Y.; Richardson, J. J. et al. Metal-phenolic coatings as a platform to trigger endosomal escape of nanoparticles. ACS Nano 2019, 13, 11653–11664.

[30]

Zhang, C. H.; Wei, S.; Hu, Y. H.; Tang, H. H.; Gao, J. D.; Yin, Z. G.; Guan, Q. J. Selective adsorption of tannic acid on calcite and implications for separation of fluorite minerals. J. Colloid Interface Sci. 2018, 512, 55–63.

[31]

Bai, S. M.; Zhang, X. L.; Cai, P. Q.; Huang, X. W.; Huang, Y. Q.; Liu, R.; Zhang, M. Y.; Song, J. B.; Chen, X. D.; Yang, H. H. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nanoscale Horiz. 2019, 4, 1333–1341.

[32]

Zheng, X. R.; Ke, X.; Yu, P.; Wang, D. Q.; Pan, S. Y.; Yang, J. J.; Ding, C. M.; Xiao, S. M.; Luo, J.; Li, J. S. A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity. J. Mater. Chem. B 2020, 8, 10407–10415.

[33]

Sowmya, S.; Bumgardener, J. D.; Chennazhi, K. P.; Nair, S. V.; Jayakumar, R. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progr. Polym. Sci. 2013, 38, 1748–1772.

[34]

Li, C.; Lu, D. Y.; Deng, J. J.; Zhang, X.; Yang, P. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv. Mater. 2019, 31, 1903973.

[35]

Curtis, A. R.; West, N. X.; Su, B. Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater. 2010, 6, 3740–3746.

[36]

Liang, K. N.; Weir, M. D.; Reynolds, M. A.; Zhou, X. D.; Li, J. Y.; Xu, H. H. K. Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid. Mater. Sci. Eng. C 2017, 72, 7–17.

[37]

Li, J. H.; Yang, J. J.; Li, J. Y.; Chen, L.; Liang, K. N.; Wu, W.; Chen, X. Y.; Li, J. S. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials 2013, 34, 6738–6747.

[38]

Ke, X.; Dong, Z. Y.; Tang, S. X.; Chu, W. L.; Zheng, X. R.; Zhen, L.; Chen, X. Y.; Ding, C. M.; Luo, J.; Li, J. S. A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. Biomater. Sci. 2020, 8, 4346–4357.

[39]

Orchardson, R.; Gillam, D. G. Managing dentin hypersensitivity. J. Am. Dent. Assoc. 2006, 137, 990–998.

[40]

Shao, C. Y.; Jin, B.; Mu, Z.; Lu, H.; Zhao, Y. Q.; Wu, Z. F.; Yan, L. M.; Zhang, Z. S.; Zhou, Y. C.; Pan, H. H. et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Scie. Adv. 2019, 5, eaaw9569.

[41]

Luo, J.; Yang, J. J.; Zheng, X. R.; Ke, X.; Chen, Y. T.; Tan, H.; Li, J. S. A highly stretchable, real-time self-healable hydrogel adhesive matrix for tissue patches and flexible electronics. Adv. Healthc. Mater. 2020, 9, 1901423.

[42]

Bai, S. M.; Zhang, X. L.; Lv, X. L.; Zhang, M. Y.; Huang, X. W.; Shi, Y.; Lu, C. H.; Song, J. B.; Yang, H. H. Bioinspired minera-organic bone adhesives for stable fracture fixation and accelerated bone regeneration. Adv. Funct. Mater. 2020, 30, 1908381.

[43]

Hou, A. L.; Luo, J.; Zhang, M.; Li, J. S.; Chu, W. L.; Liang, K. N.; Yang, J. J.; Li, J. Y. Two-in-one strategy: A remineralizing and anti-adhesive coating against demineralized enamel. Int. J. Oral. Sci. 2020, 12, 27.

[44]

Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.

[45]

Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690.

[46]

MacKerell, A. D. Jr.; Banavali, N.; Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. 3.0.CO;2-W"> Biopolymers 2000, 56, 257–265.

[47]

Bjelkmar, P.; Larsson, P.; Cuendet, M. A.; Hess, B.; Lindahl, E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 2010, 6, 459–466.

[48]

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log( N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

[49]

Lin, T. J.; Heinz, H. Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J. Phys. Chem. C 2016, 120, 4975–4992.

[50]

Spicher, S.; Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem., Int. Ed. 2020, 59, 15665–15673.

[51]

Martínez, L.; Andrade, R.; Birgin, E. G.; Martínez, J. M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164.

[52]

Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.

File
12274_2023_6336_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2023
Revised: 15 November 2023
Accepted: 17 November 2023
Published: 28 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We are grateful for the financial support provided by the National Natural Science Foundation of China (Nos. 52273135, 51925304, and 52203180). We thank L. Z. Sun, L. Zhen, and S. Y. Tao for the technical assistance and valuable discussions.

Return