Journal Home > Volume 17 , Issue 5

Carbon-supported noble-metal-free single-atom catalysts (SACs) have aroused widespread interest due to their green chemistry aspects and excellent performances. Herein, we propose a “ligand regulation strategy” and achieve the successful fabrication of bifunctional SAC/MOF (MOF = metal–organic framework) nanocomposite (abbreviated NiSA/ZIF-300; ZIF = ZIF-8) with exceptional catalytic performance and robustness. The designed NiSA/ZIF-300 has a planar interfacial structure with the Ni atom, involving one S and three N atoms bonded to Ni(II), fabricated by controllable pyrolysis of volatile Ni-S fragments. For CO2 cycloaddition to styrene epoxide, NiSA/ZIF-300 exhibits ultrahigh activity (turnover number (TON) = 1.18 × 105; turnover frequency (TOF) = 9830 molSC·molNi−1·h−1; SC = styrene carbonate) and durability at 70 °C under 1 atm CO2 pressure, which is much superior to Ni complex/ZIF, NiNP/ZIF-300, and most reported catalysts. This study offers a simple method of bifunctional SAC/MOF nanocomposite fabrication and usage, and provides guidance for the precise design of additional original SACs with unique catalytic properties.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design of bifunctional single-atom catalysts NiSA/ZIF-300 for CO2 conversion by ligand regulation strategy

Show Author's information Wengang Fu1,§Yapei Yun1,§Hongting Sheng1( )Xiaokang Liu3Tao Ding3Shuxian Hu4Tao Yao3Binghui Ge1Yuanxin Du1Didier Astruc2( )Manzhou Zhu1,5( )
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, College of Materials Science and Engineering, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
Université de Bordeaux, ISM, UMR CNRS N°5255, 351 Cours de La Libération, 33405 Talence Cedex, France
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Anhui Tongyuan Environment Energy Saving Co., Ltd, Hefei 230041, China

§ Wengang Fu and Yapei Yun contributed equally to this work.

Abstract

Carbon-supported noble-metal-free single-atom catalysts (SACs) have aroused widespread interest due to their green chemistry aspects and excellent performances. Herein, we propose a “ligand regulation strategy” and achieve the successful fabrication of bifunctional SAC/MOF (MOF = metal–organic framework) nanocomposite (abbreviated NiSA/ZIF-300; ZIF = ZIF-8) with exceptional catalytic performance and robustness. The designed NiSA/ZIF-300 has a planar interfacial structure with the Ni atom, involving one S and three N atoms bonded to Ni(II), fabricated by controllable pyrolysis of volatile Ni-S fragments. For CO2 cycloaddition to styrene epoxide, NiSA/ZIF-300 exhibits ultrahigh activity (turnover number (TON) = 1.18 × 105; turnover frequency (TOF) = 9830 molSC·molNi−1·h−1; SC = styrene carbonate) and durability at 70 °C under 1 atm CO2 pressure, which is much superior to Ni complex/ZIF, NiNP/ZIF-300, and most reported catalysts. This study offers a simple method of bifunctional SAC/MOF nanocomposite fabrication and usage, and provides guidance for the precise design of additional original SACs with unique catalytic properties.

Keywords: catalyst, CO2 conversion, cycloaddition, single atom, bifunctional

References(46)

[1]

Liu, K. G.; Bigdeli, F.; Panjehpour, A.; Larimi, A.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Metal organic framework composites for reduction of CO2. Coord. Chem. Rev. 2023, 493, 215257.

[2]

Chang, B.; Pang, H.; Raziq, F.; Wang, S. B.; Huang, K. W.; Ye, J. H.; Zhang, H. B. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives. Energy Environ. Sci. 2023, 16, 4714–4758.

[3]

Grammatico, D.; Bagnall, A. J.; Riccardi, L.; Fontecave, M.; Su, B. L.; Billon, L. Heterogenised molecular catalysts for sustainable electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202206399.

[4]

Tounzoua, C. N.; Grignard, B.; Detrembleur, C. Exovinylene cyclic carbonates: Multifaceted CO2-based building blocks for modern chemistry and polymer science. Angew. Chem., Int. Ed. 2022, 61, e202116066.

[5]

Deacy, A. C.; Kilpatrick, A. F. R.; Regoutz, A.; Williams, C. K. Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat. Chem. 2020, 12, 372–380.

[6]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[7]

Tan, X. Y.; Yu, C.; Song, X. D.; Zhao, C. T.; Cui, S.; Xu, H. Y.; Chang, J. W.; Guo, W.; Wang, Z.; Xie, Y. Y. et al. Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over CoPc molecule-implanted graphitic carbon nitride catalyst. Adv. Energy Mater. 2021, 11, 2100075.

[8]

Yi, J. D.; Gao, X. P.; Zhou, H.; Chen, W.; Wu, Y. E. Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO2 electroreduction at industrial-level current density. Angew. Chem., Int. Ed. 2022, 61, e202212329.

[9]

Shen, Y.; Yang, J. Y.; Zhu, C.; Fang, Q. L.; Song, S.; Chen, B. L. Mechanistic insights into the atomic distance effect on adsorption and degradation of aromatic compounds. ACS Catal. 2023, 13, 8943–8954.

[10]

Lv, C. M.; Huang, K.; Fan, Y.; Xu, J.; Lian, C.; Jiang, H. L.; Zhang, Y. Z.; Ma, C.; Qiao, W. M.; Wang, J. T. et al. Electrocatalytic reduction of carbon dioxide in confined microspace utilizing single nickel atom decorated nitrogen-doped carbon nanospheres. Nano Energy 2023, 111, 108384.

[11]

Liang, S. J.; Zhong, X. H.; Zhong, Z. Q.; Deng, H.; Wong, W. Y. Highly dispersed nickel site catalysts for diluted CO2 photoreduction to CO with nearly 100% selectivity. Appl. Catal. B: Environ. 2023, 337, 122958.

[12]

Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni–N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

[13]

Ren, W. H.; Tan, X.; Jia, C.; Krammer, A.; Sun, Q.; Qu, J. T.; Smith, S. C.; Schueler, A.; Hu, X. L.; Zhao, C. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202203335.

[14]

Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

[15]

Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

[16]

Hu, Y.; Liu, Z. X.; Xu, J.; Huang, Y. N.; Song, Y. Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J. Am. Chem. Soc. 2013, 135, 9287–9290.

[17]

Zhou, Y. T.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R. R.; Rani, E.; Singh, H.; Kirillov, A. M. Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord. Chem. Rev. 2022, 451, 214264.

[18]

Nordin, N. A.; Mohamed, M. A.; Salehmin, M. N. I.; Yusoff, S. F. M. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord. Chem. Rev. 2022, 468, 214639.

[19]

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

[20]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[21]

Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

[22]

Liu, C. H.; Wu, Y.; Sun, K. A.; Fang, J. J.; Huang, A. J.; Pan, Y.; Cheong, W. C.; Zhuang, Z. W.; Zhuang, Z. B.; Yuan, Q. H. et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 2021, 7, 1297–1307.

[23]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[24]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[25]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[26]

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

[27]

Wang, L. X.; Gao, X. P.; Wang, S. C.; Chen, C.; Song, J.; Ma, X. H.; Yao, T.; Zhou, H.; Wu, Y. E. Axial dual atomic sites confined by layer stacking for electroreduction of CO2 to tunable syngas. J. Am. Chem. Soc. 2023, 145, 13462–13468.

[28]

Zhao, X. L.; Wu, G.; Zheng, X. S.; Jiang, P.; Yi, J. D.; Zhou, H.; Gao, X. P.; Yu, Z. Q.; Wu, Y. E. A double atomic-tuned RuBi SAA/Bi@OG nanostructure with optimum charge redistribution for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300879.

[29]

Zhang, C. H.; Wang, X. K.; Ma, Z. T.; Yao, H. X.; Liu, H. J.; Li, C.; Zhou, J.; Xu, R.; Zheng, X. S.; Wang, H. L. et al. Spin state modulation on dual Fe center by adjacent Ni sites enabling the boosted activities and ultra-long stability in Zn-air batteries. Sci. Bull. 2023, 68, 2042–2053.

[30]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[31]

Zhang, C. H.; Wang, X. K.; Song, K.; Chen, K. Y.; Dai, S. X.; Wang, H. L.; Huang, M. H. Engineering adjacent Fe3C as proton-feeding centers to single Fe sites enabling boosted oxygen reduction reaction kinetics for robust Zn-air batteries at high current densities. Nano Res. 2023, 16, 9371–9378.

[32]

Li, C. J.; Shan, G. C.; Guo, C. X.; Ma, R. G. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction. Rare Met. 2023, 42, 1778–1799.

[33]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[34]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[35]

Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

[36]

Wang, H.; Liu, X. Y.; Yang, W. J.; Mao, G. Y.; Meng, Z.; Wu, Z. K.; Jiang, H. L. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal–organic frameworks for enhanced catalysis. J. Am. Chem. Soc. 2022, 144, 22008–22017.

[37]

Li, Y. Q.; Ni, B.; Li, X. D.; Wang, X. H.; Zhang, D. F.; Zhao, Q. F.; Li, J. L.; Lu, T.; Mai, W.; Pan, L. K. High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers. Nano-Micro Lett. 2019, 11, 60.

[38]

Abdelkader-Fernández, V. K.; Domingo-García, M.; López-Garzón, F. J.; Fernandes, D. M.; Freire, C.; de la Torre, D. L.; Melguizo, M.; Godino-Salido, L.; Pérez-Mendoza, M. Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma. Carbon 2019, 144, 269–279.

[39]

Kim, H. S.; Choi, J.; Kong, J. M.; Kim, H.; Yoo, S. J.; Park, H. S. Regenerative electrocatalytic redox cycle of copper sulfide for sustainable NH3 production under ambient conditions. ACS Catal. 2021, 11, 435–445.

[40]

Zhu, Q.; Wang, J. D.; Liu, X. L.; Ebejer, N.; Rambabu, D.; Vlad, A. Mixed anionic and cationic redox chemistry in a tetrathiomolybdate amorphous coordination framework. Angew. Chem., Int. Ed. 2020, 59, 16579–16586.

[41]

Jiang, H.; Liu, L.; Zhao, K.; Liu, Z.; Zhang, X. S.; Hu, S. Z. Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim. Acta 2020, 337, 135758.

[42]

Jia, C.; Li, S. N.; Zhao, Y.; Hocking, R. K.; Ren, W. H.; Chen, X. J.; Su, Z.; Yang, W. F.; Wang, Y.; Zheng, S. S. et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2107072.

[43]

Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

[44]

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

[45]

Sun, C. M.; Meng, F. H.; Wang, J. J.; Li, Z. CoZn-ZIF-derived carbon-supported Cu catalyst for methanol oxidative carbonylation to dimethyl carbonate. New J. Chem. 2022, 46, 7452–7463.

[46]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

File
12274_2023_6334_MOESM1_ESM.cif (949.6 KB)
12274_2023_6334_MOESM2_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2023
Revised: 01 November 2023
Accepted: 13 November 2023
Published: 12 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the financial support by the National Natural Science Foundation of China (Nos. 21972001 and 21871001), the Natural Science Foundation of Anhui Province (No. 2008085MB37), the Anhui University, the University of Bordeaux, and the Centre National de la Recherche Scientifique (CNRS).

Return