AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO2 single-atom catalysts

Danfeng Wu1,§Shuyun Zhou2,§Congcong Du1Juan Li2Jianyu Huang3Hong-xia Shen4Abhaya K. Datye5Shan Jiang6Jeffrey T. Miller6Sen Lin2( )Haifeng Xiong1,7,8,( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
College of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314000, China
Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, NM 8731-0001, USA
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials, Longyan 366300, China
Present address: State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

§ Danfeng Wu and Shuyun Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

The proximity between metal single atom and surface hydroxyl can determine the formation of active intermediates to affect the catalytic performances in catalysis.

Abstract

The local structure of the metal single-atom site is closely related to the catalytic activity of metal single-atom catalysts (SACs). However, constructing SACs with homogeneous metal active sites is a challenge due to the surface heterogeneity of the conventional support. Herein, we prepared two Rh1/CeO2 SACs (0.5Rh1/r-CeO2 and 0.5Rh1/c-CeO2, respectively) using two shaped CeO2 (rod and cube) exposing different facets, i.e., CeO2 (111) and CeO2 (100). In CO oxidation reaction, the T100 of 0.5Rh1/r-CeO2 SACs is 120 °C, while the T100 of 0.5Rh1/c-CeO2 SACs is as high as 200 °C. Via in-situ CO diffuse reflectance infrared Fourier transform spectroscopy (CO-DRIFTS), we found that the proximity between OH group and Rh single atom on the plane surface plays an important role in the catalytic activity of Rh1/CeO2 SAC system in CO oxidation. The Rh single atom trapped at the CeO2 (111) crystal surface forms the Rh1(OH)adjacent species, which is not found on the CeO2 (100) crystal surface at room temperature. Furthermore, during CO oxidation, the OH group far from Rh single atom on the 0.5Rh1/c-CeO2 disappears and forms Rh1(OH)adjacent species when the temperature is above 150 °C. The formation of Rh1(OH)adjacentCO intermediate in the reaction is pivotal for the excellent catalytic activity, which explains the difference in the catalytic activity of Rh single atoms on two different CeO2 planes. The formed Rh1(OH)adjacent-O-Ce structure exhibits good stability in the reducing atmosphere, maintaining the Rh atomic dispersion after CO oxidation even when pre-reduced at high temperature of 500 °C. Density functional theory (DFT) calculations validate the unique activity and reaction path of the intermediate Rh1(OH)adjacentCO species formed. This work demonstrates that the proximity between metal single atom and hydroxyl can determine the formation of active intermediates to affect the catalytic performances in catalysis.

Electronic Supplementary Material

Download File(s)
12274_2023_6333_MOESM1_ESM.pdf (3.5 MB)

References

[1]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[2]

Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeO x nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.

[3]

Wu, D. F.; Liu, S. X.; Zhong, M. Q.; Zhao, J. F.; Du, C. C.; Yang, Y. L.; Sun, Y. F.; Lin, J. D.; Wan, S. L.; Wang, S. et al. Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation. ACS Catal. 2022, 12, 12253–12267.

[4]

Lou, Y.; Cai, Y. F.; Hu, W. D.; Wang, L.; Dai, Q. G.; Zhan, W. C.; Guo, Y. L.; Hu, P.; Cao, X. M.; Liu, J. Y. et al. Identification of active area as active center for CO oxidation over single Au atom catalyst. ACS Catal. 2020, 10, 6094–6101.

[5]

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeO x single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

[6]

Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

[7]

Zhang, Z.; Li, H. Y.; Wu, D. F.; Zhang, L. N.; Li, J. W.; Xu, J. L.; Lin, S.; Datye, A. K.; Xiong, H. F. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord. Chem. Rev. 2022, 460, 214469.

[8]

Xie, S. H.; Liu, L. P.; Lu, Y.; Wang, C. Y.; Cao, S. F.; Diao, W. J.; Deng, J. G.; Tan, W.; Ma, L.; Ehrlich, S. N. et al. Pt atomic single-layer catalyst embedded in defect-enriched ceria for efficient CO oxidation. J. Am. Chem. Soc. 2022, 144, 21255–21266.

[9]
Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019 , 10, 1330.
[10]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[11]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[12]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-Atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Edit. 2022, 61, e202117347.

[13]

Jones, J.; Xiong, H. F.; Delariva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G. S.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[14]

Shi, Y. J.; Zhou, Y. W.; Lou, Y.; Chen, Z. P.; Xiong, H. F.; Zhu, Y. F. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Adv. Sci. 2022, 9, 2201520.

[15]

Zeng, M. Y.; Cheng, L.; Gu, Q. Q.; Yang, B.; Yu, B. Y.; Xu, J.; Zhang, Y.; Pan, C. S.; Cao, X. M.; Lou, Y. et al. ZSM-5-confined Cr1-O4 active sites boost methane direct oxidation to C1 oxygenates under mild conditions. EES Catal. 2023, 1, 153–161.

[16]

Yao, C. H.; Fan, H. H.; Adogwa, A.; Xiong, H. F.; Yang, M.; Liu, F. D.; Chen, Z. P.; Lou, Y. Recent advances in carbon dioxide selective hydrogenation and biomass valorization via single-atom catalysts. Resour. Chem. Mater. 2023, 2, 189–207.

[17]

Chen, Y.; Wan, Q.; Cao, L. R.; Gao, Z.; Lin, J.; Li, L.; Pan, X. L.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185.

[18]

Ma, Z. W.; Zhao, S. L.; Pei, X. P.; Xiong, X. M.; Hu, B. New insights into the support morphology-dependent ammonia synthesis activity of Ru/CeO2 catalysts. Catal. Sci. Technol. 2017, 7, 191–199.

[19]

Jiang, D.; Wan, G.; García-Vargas, C. E.; Li, L. Z.; Pereira-Hernández, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

[20]

Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem. Commun. 2020, 56, 4870–4873.

[21]

Song, B. C.; Choi, D.; Xin, Y.; Bowers, C. R.; Hagelin-Weaver, H. Ultra-low loading Pt/CeO2 catalysts: Ceria facet effect affords improved pairwise selectivity for parahydrogen enhanced NMR spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 4038–4042.

[22]

Chen, S. Y.; Li, S. D.; You, R. Y.; Guo, Z. Y.; Wang, F.; Li, G. X.; Yuan, W. T.; Zhu, B. E.; Gao, Y.; Zhang, Z. et al. Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal-support interactions. ACS Catal. 2021, 11, 5666–5677.

[23]

Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: Enhanced stabilization and catalytic properties. Adv. Mater. 2022, 34, 2107721.

[24]

Zhang, B.; Asakura, H.; Yan, N. Atomically dispersed Rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Ind. Eng. Chem. Res. 2017, 56, 3578–3587.

[25]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[26]

Zhang, L. N.; Bao, Q. Q.; Zhang, B. J.; Zhang, Y. B.; Wan, S. L.; Wang, S.; Lin, J. D.; Xiong, H. F.; Mei, D. H.; Wang, Y. Distinct role of surface hydroxyls in single-atom Pt1/CeO2 catalyst for room-temperature formaldehyde oxidation: Acid-base versus redox. JACS Au 2022, 2, 1651–1660.

[27]

Agarwal, S.; Lefferts, L.; Mojet, B. L.; Ligthart, D. A. J. M.; Hensen, E. J. M.; Mitchell, D. R. G.; Erasmus, W. J.; Anderson, B. G.; Olivier, E. J.; Neethling, J. H. et al. Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water–gas shift reactivity. ChemSusChem 2013, 6, 1898–1906.

[28]

Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

[29]

Agarwal, S.; Zhu, X.; Hensen, E. J. M.; Lefferts, L.; Mojet, B. L. Defect chemistry of ceria nanorods. J. Phys. Chem. C 2014, 118, 4131–4142.

[30]

Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y. Q.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K. et al. CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Appl. Catal. B: Environ. 2019, 243, 36–46.

[31]

Li, X. M.; Liu, K. H.; Wang, W. L.; Bai, X. D. Atomic-scale imaging of the defect dynamics in ceria nanowires under heating by in situ aberration-corrected TEM. Sci. China Chem. 2019, 62, 1704–1709.

[32]

Alcala, R.; DeLaRiva, A.; Peterson, E. J.; Benavidez, A.; Garcia-Vargas, C. E.; Jiang, D.; Pereira-Hernández, X. I.; Brongersma, H. H.; ter Veen, R.; Staněk, J. et al. Atomically dispersed dopants for stabilizing ceria surface area. Appl. Catal. B: Environ. 2021, 284, 119722.

[33]

Asokan, C.; Thang, H. V.; Pacchioni, G.; Christopher, P. Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO2. Catal. Sci. Technol. 2020, 10, 1597–1601.

[34]

Hoffman, A. J.; Asokan, C.; Gadinas, N.; Schroeder, E.; Zakem, G.; Nystrom, S. V.; Getsoian, A.; Christopher, P.; Hibbitts, D. Experimental and theoretical characterization of Rh single atoms supported on γ-Al2O3 with varying hydroxyl contents during NO reduction CO. ACS Catal. 2022, 12, 11697–11715.

[35]

Thang, H. V.; Pacchioni, G. On the real nature of Rh single-atom catalysts dispersed on the ZrO2 surface. ChemCatChem 2020, 12, 2595–2604.

[36]

Khivantsev, K.; Vargas, C. G.; Tian, J. S.; Kovarik, L.; Jaegers, N. R. ;Szanyi, J.; Wang, Y. Economizing on precious metals in three-way catalysts: Thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant Conditions. Angew. Chem., Int. Edit. 2021, 60, 391–398.

[37]

Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

[38]

Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 2018, 140, 9558–9565.

[39]

Liu, L. J.; Yao, Z. J.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. ChemCatChem 2011, 3, 978–989.

[40]

Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.

[41]

Badri, A.; Binet, C.; Lavalley, J. C. An FTIR study of surface ceria hydroxy groups during a redox process with H2. J. Chem. Soc., Faraday Trans. 1996, 92, 4669–4673.

[42]

Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J. C.; El Fallah, J.; Hilaire, L.; Le Normand, F.; Quéméré, E. et al. Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements. J. Chem. Soc., Faraday Trans. 1991, 87, 1601–1609.

[43]

Song, W. Y.; Jansen, A. P. J.; Hensen, E. J. M. A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discuss. 2013, 162, 281–292.

[44]

Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

[45]

Lu, Y. B.; Zhou, S. L.; Kuo, C. T.; Kunwar, D.; Thompson, C.; Hoffman, A. S.; Boubnov, A.; Lin, S.; Datye, A. K.; Guo, H. et al. Unraveling the intermediate reaction complexes and critical role of support-derived oxygen atoms in CO oxidation on single-atom Pt/CeO2. ACS Catal. 2021, 11, 8701–8715.

[46]

Kunwar, D.; Zhou, S. L.; DeLaRiva, A.; Peterson, E. J.; Xiong, H. F.; Pereira-Hernández, X. I.; Purdy, S. C.; ter Veen, R.; Brongersma, H. H.; Miller, J. T. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 2019, 9, 3978–3990.

[47]

Jang, M. G.; Yoon, S.; Shin, D.; Kim, H. J.; Huang, R.; Yang, E.; Kim, J.; Lee, K. S.; An, K.; Han, J. W. Boosting support reducibility and metal dispersion by exposed surface atom control for highly active supported metal catalysts. ACS Catal. 2022, 12, 4402–4414.

[48]

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

Nano Research
Pages 397-406
Cite this article:
Wu D, Zhou S, Du C, et al. The proximity between hydroxyl and single atom determines the catalytic reactivity of Rh1/CeO2 single-atom catalysts. Nano Research, 2024, 17(1): 397-406. https://doi.org/10.1007/s12274-023-6333-3
Topics:

803

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 16 June 2023
Revised: 10 November 2023
Accepted: 13 November 2023
Published: 02 December 2023
© Tsinghua University Press 2023
Return