Journal Home > Volume 17 , Issue 5

Zn-air batteries (ZABs) as a class of promising energy storage setups are generally powered by efficient and robust catalysts at the oxygen-involving cathode. Although the existing non-noble catalysts have outperformed noble Pt benchmark in the alkaline liquid-state ZABs, to the best of our knowledge few have excelled Pt in quasi-solid-state (QSS) ZABs. Herein, we found that an integrated Mn-Co cathode derived from the bimetallic Mn/Co metal organic frameworks generates a 1.4-fold greater power density in the QSS ZABs than a Pt cathode while its power density in liquid-state ZABs is only 0.8-fold of the latter. Moreover, such Mn-Co catalyst delivers high-rate oxygen reduction reaction (ORR) capability with half-wave potential of 0.84 V. The in-depth characterizations and analyses have demonstrated that the Co and Mn species show the specific affinity towards H2O and O2, respectively, synergizing the ORR process in the water-deficient environment of QSS ZABs. This work has enlightened the rational design of non-noble metal catalysts to improve the power density of QSS ZABs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Correlative Mn-Co catalyst excels Pt in oxygen reduction reaction of quasi-solid-state zinc-air batteries

Show Author's information Tingting Wang1Jincheng Huang1Wei Sang2Cai Zhou1Bohan Zhang1Wei Zhu1Kang Du1Zongkui Kou2( )Shengxiang Wang1( )
School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

Zn-air batteries (ZABs) as a class of promising energy storage setups are generally powered by efficient and robust catalysts at the oxygen-involving cathode. Although the existing non-noble catalysts have outperformed noble Pt benchmark in the alkaline liquid-state ZABs, to the best of our knowledge few have excelled Pt in quasi-solid-state (QSS) ZABs. Herein, we found that an integrated Mn-Co cathode derived from the bimetallic Mn/Co metal organic frameworks generates a 1.4-fold greater power density in the QSS ZABs than a Pt cathode while its power density in liquid-state ZABs is only 0.8-fold of the latter. Moreover, such Mn-Co catalyst delivers high-rate oxygen reduction reaction (ORR) capability with half-wave potential of 0.84 V. The in-depth characterizations and analyses have demonstrated that the Co and Mn species show the specific affinity towards H2O and O2, respectively, synergizing the ORR process in the water-deficient environment of QSS ZABs. This work has enlightened the rational design of non-noble metal catalysts to improve the power density of QSS ZABs.

Keywords: synergistic effect, zinc-air battery, quasi-solid-state, non-noble metal catalysts

References(42)

[1]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[2]

Lyu, Z.; Koh, J. J.; Lim, G. J. H.; Zhang, D. W.; Xiong, T.; Zhang, L.; Liu, S. Q.; Duan, J. F.; Ding, J.; Wang, J. et al. Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 2022, 1, 507–516.

[3]

Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. G.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.

[4]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[5]

Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 1627–1633.

[6]

Paul, R.; Zhai, Q. F.; Roy, A. K.; Dai, L. M. Charge transfer of carbon nanomaterials for efficient metal-free electrocatalysis. Interdiscip. Mater. 2022, 1, 28–50

[7]

Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. D. Understanding the activity of Co-N4− x C x in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.

[8]

Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

[9]

Sun, H. Q.; Zhao, M. Q.; Ma, C.; Chen, W.; Yang, Y.; Han, Y. H. Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries. Nano Res. 2023, 16, 4980–4986.

[10]

Xu, Z. A.; Zhu, J.; Shao, J. Z.; Xia, Y.; Tseng, J.; Jiao, C. L.; Ren, G. Y.; Liu, P. F.; Li, G. S.; Chen, R. X. et al. Atomically dispersed cobalt in core–shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries. Energy Storage Mater. 2022, 47, 365–375.

[11]

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

[12]

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe-N x -C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

[13]

Zhou, C. H.; Chen, X.; Liu, S.; Han, Y.; Meng, H. B.; Jiang, Q. Y.; Zhao, S. M.; Wei, F.; Sun, J.; Tan, T. et al. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries. J. Am. Chem. Soc. 2022, 144, 2694–2704.

[14]

Lazaridis, T.; Stühmeier, B. M.; Gasteiger, H. A.; El-Sayed, H. A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat. Catal. 2022, 5, 363–373.

[15]

Ma, Q. L.; Mu, S. C. Acidic oxygen evolution reaction: Mechanism, catalyst classification, and enhancement strategies. Interdiscip. Mater. 2023, 2, 53–90

[16]

Zheng, X. R.; Cao, Y. H.; Wang, H. Z.; Zhang, J. F.; Zhao, M. H.; Huang, Z.; Wang, Y.; Zhang, L.; Deng, Y. D.; Hu, W. B. et al. Designing breathing air-electrode and enhancing the oxygen electrocatalysis by thermoelectric effect for efficient Zn-air batteries. Angew. Chem., Int. Ed. 2023, 62, e202302689.

[17]

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

[18]

Wang, Y.; Yang, Y.; Jia, S. F.; Wang, X. M.; Lyu, K. J.; Peng, Y. Q.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 2019, 10, 1506.

[19]

Sun, S.; Yu, H. R.; Li, L. L.; Yu, X. F.; Zhang, X. H.; Lu, Z. M.; Yang, X. J. Sodium borohydride treatment to prepare manganese oxides with oxygen vacancy defects for efficient oxygen reduction. Metals 2022, 12, 1059.

[20]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[21]

Xu, J. S.; Li, R.; Xu, C. Q.; Zeng, R. G.; Jiang, Z.; Mei, B. B.; Li, J.; Meng, D. Q.; Chen, J. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B: Environ. 2021, 289, 120028.

[22]

Kimoto, K.; Asaka, T.; Nagai, T.; Saito, M.; Matsui, Y.; Ishizuka, K. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 2007, 450, 702–704.

[23]

Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.

[24]

Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

[25]

Wu, L. P.; Li, B.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Xia, Q.; Peng, W. C. Preferential growth of the cobalt (200) facet in Co@N-C for enhanced performance in a Fenton-like reaction. ACS Catal. 2021, 11, 5532–5543.

[26]

Fernandes, C.; Pereira, C.; Fernández-García, M. P.; Pereira, A. M.; Guedes, A.; Fernández-Pacheco, R. F.; Ibarra, A.; Ibarra, M. R.; Araújo, J. P.; Freire, C. Tailored design of Co x Mn1− x Fe2O4 nanoferrites: A new route for dual control of size and magnetic properties. J. Mater. Chem. C 2014, 2, 5818–5828.

[27]

Kou, Z. K.; Meng, T.; Guo, B. B.; Amiinu, I. S.; Li, W. Q.; Zhang, J.; Mu, S. C. A generic conversion strategy: From 2D metal carbides (M x C y ) to M-self-doped graphene toward high-efficiency energy applications. Adv. Funct. Mater. 2017, 27, 1604904.

[28]

Saka, C. Oxygen and nitrogen-doped metal-free microalgae carbon nanoparticles for efficient hydrogen production from sodium borohydride in methanol. Int. J. Hydrogen Energy 2021, 46, 26298–26307.

[29]

Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X. D.; Chen, Y. W.; Yuan, C.; Feng, X. L.; Scherf, U. Synergetic contribution of boron and Fe-N x species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2018, 3, 252–260.

[30]

Xie, Z. Z.; Shang, X. H.; Yang, J. M.; Hu, B.; Nie, P. F.; Jiang, W. W.; Liu, J. Y. 3D interconnected boron- and nitrogen-codoped carbon nanosheets decorated with manganese oxides for high-performance capacitive deionization. Carbon 2020, 158, 184–192

[31]

Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 1201–1204.

[32]

Zhao, R. P.; Chen, J. Y.; Chen, Z. J.; Jiang, X.; Fu, G. T.; Tang, Y. W.; Jin, W.; Lee, J. M.; Huang, S. M. Atomically dispersed CoN4/B, N-C nanotubes boost oxygen reduction in rechargeable Zn-air batteries. ACS Appl. Energy Mater. 2020, 3, 4539–4548.

[33]

He, W. H.; Jiang, C. H.; Wang, J. B.; Lu, L. H. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew. Chem., Int. Ed. 2014, 53, 9503–9507.

[34]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

[35]

Zeng, M.; Liu, Y. L.; Zhao, F. P.; Nie, K. Q.; Han, N.; Wang, X. X.; Huang, W. J.; Song, X. N.; Zhong, J.; Li, Y. G. Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 2016, 26, 4397–4404.

[36]

Liu, Z. J.; Zhao, Z. H.; Wang, Y. Y.; Dou, S.; Yan, D. F.; Liu, D. D.; Xia, Z. H.; Wang, S. Y. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis. Adv. Mater. 2017, 29, 1606207

[37]

Kurbatov, G.; Darque-Ceretti, E.; Aucouturier, M. Characterization of hydroxylated oxide film on iron surfaces and its acid-base properties using XPS. Surf. Interface Anal. 1992, 18, 811–820.

[38]

Kang, D.; Rahimi, N.; Gordon, M. J.; Metiu, H.; McFarland, E. W. Catalytic methane pyrolysis in molten MnCl2-KCl. Appl. Catal. B: Environ. 2019, 254, 659–666.

[39]

Andreev, A. S.; Kazakova, M. A.; Ishchenko, A. V.; Selyutin, A. G.; Lapina, O. B.; Kuznetsov, V. L.; De Lacaillerie, J. B. D. Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles. Carbon 2017, 114, 39–49.

[40]

Zhang, W. M.; Yao, X. Y.; Zhou, S. N.; Li, X. W.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-N x -embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 1800423.

[41]

Zhou, Q. Y.; Cai, J. J.; Zhang, Z.; Gao, R.; Chen, B.; Wen, G. B.; Zhao, L.; Deng, Y. P.; Dou, H. Z.; Gong, X. F. et al. A gas-phase migration strategy to synthesize atomically dispersed Mn-N-C catalysts for Zn-air batteries. Small Methods 2021, 5, 2100024.

[42]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

File
12274_2023_6332_MOESM1_ESM.pdf (4.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 October 2023
Revised: 08 November 2023
Accepted: 12 November 2023
Published: 12 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Z. K. K. acknowledges the financial support of the Fundamental Research Funds for the Central Universities (No. 40120631) and National Natural Science Foundation of China (No. 52202291) for the support.

Return