Journal Home > Volume 17 , Issue 5

The exploration of bifunctional electrocatalysts with high catalytic activity and long-term durability for low-temperature Zn-air batteries (ZABs) is an ongoing challenge. Here, quintet-shelled hollow spheres, P-doped multi-layer Co3O4 (PM-Co3O4), with enriched oxygen vacancies are prepared by thermally induced mass relocation and a simple phosphating process. Various advanced characterizations reveal P anion-induced effects on internal electronic structure and local coordination environment. The finite element method elucidates that the complex multi-layer spherical nanostructure is conducive to the transport and diffusion of OH and O2. Benefiting from its unique structural features and abundant oxygen vacancies, the well-designed PM-Co3O4 presents small reversible oxygen overpotential for catalyzing oxygen reduction/evolution reactions. Accordingly, the fabricated low-temperature ZABs based on PM-Co3O4 as air-cathode exhibit high power density (20.8 mW·cm–2) and long-term stability (over 600 cycles) at the ultra-low temperature of –40 °C, outperforming state-of-art Pt/C+IrO2-based ZABs. Furthermore, the dynamic evolution mechanism of cobalt oxide catalysts during ZAB operation is elucidated. This work provides a guideline to design efficient electrocatalysts with regulated electronic configurations and exquisite nano-/microstructures for ZABs under extreme working conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure and defect dual-engineering of cobalt oxides for low-temperature Zn-air batteries

Show Author's information Hang Lei1Zhuowen Huangfu2Liangjun Chen2Xuelin Yang1Zilong Wang2( )Wenjie Mai2
Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China

Abstract

The exploration of bifunctional electrocatalysts with high catalytic activity and long-term durability for low-temperature Zn-air batteries (ZABs) is an ongoing challenge. Here, quintet-shelled hollow spheres, P-doped multi-layer Co3O4 (PM-Co3O4), with enriched oxygen vacancies are prepared by thermally induced mass relocation and a simple phosphating process. Various advanced characterizations reveal P anion-induced effects on internal electronic structure and local coordination environment. The finite element method elucidates that the complex multi-layer spherical nanostructure is conducive to the transport and diffusion of OH and O2. Benefiting from its unique structural features and abundant oxygen vacancies, the well-designed PM-Co3O4 presents small reversible oxygen overpotential for catalyzing oxygen reduction/evolution reactions. Accordingly, the fabricated low-temperature ZABs based on PM-Co3O4 as air-cathode exhibit high power density (20.8 mW·cm–2) and long-term stability (over 600 cycles) at the ultra-low temperature of –40 °C, outperforming state-of-art Pt/C+IrO2-based ZABs. Furthermore, the dynamic evolution mechanism of cobalt oxide catalysts during ZAB operation is elucidated. This work provides a guideline to design efficient electrocatalysts with regulated electronic configurations and exquisite nano-/microstructures for ZABs under extreme working conditions.

Keywords: low temperature, electrocatalysts, oxygen vacancies, hollow spheres, Zn-air batteries

References(69)

[1]

Lv, J.; Thangavel, G.; Li, Y.; Xiong, J. Q.; Gao, D. C.; Ciou, J.; Tan, M. W. M.; Aziz, I.; Chen, S. H.; Chen, J. T. et al. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci. Adv. 2021, 7, eabg8433.

[2]

Liu, R. Y.; Wang, Z. L.; Fukuda, K.; Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 2022, 7, 870–886.

[3]

Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

[4]

Lei, H.; Yang, S. J.; Wan, Q. X.; Ma, L.; Javed, M. S.; Tan, S. Z.; Wang, Z. L.; Mai, W. Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. J. Energy Chem. 2022, 68, 78–86.

[5]

Xie, J. P.; Li, J. L.; Li, X. D.; Lei, H.; Zhuo, W. C.; Li, X. B.; Hong, G.; Hui, K. N.; Pan, L. K.; Mai, W. J. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021, 3, 791–799.

[6]

Guo, X. L.; Zheng, X. Q.; Hu, X. L.; Zhao, Q. N.; Li, L.; Yu, P.; Jing, C.; Zhang, Y. X.; Huang, G. S.; Jiang, B. et al. Electrostatic adsorbing graphene quantum dot into nickel-based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy 2021, 84, 105932.

[7]

Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-N x -C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.

[8]

Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. Escience 2022, 2, 546–556.

[9]

Huang, H. Y.; Liu, A. M.; Kang, Q. L.; Ye, X. Y.; Chen, H. L.; Su, W. N.; Ma, T. L. Synthesis of one-dimensional vanadium-doped CoS/Co9S8 heterojunctions as bifunctional electrocatalysts for zinc-air battery. Mater. Today Energy 2022, 25, 100968.

[10]

Lei, H.; Ma, L.; Wan, Q. X.; Tan, S. Z.; Yang, B.; Wang, Z. L.; Mai, W.; Fan, H. J. Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 2022, 12, 2202522.

[11]

Ding, K. X.; Hu, J. G.; Luo, J.; Jin, W.; Zhao, L. M.; Zheng, L. R.; Yan, W. S.; Weng, B. C.; Hou, H. S.; Ji, X. B. Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries. Nano Energy 2022, 91, 106675.

[12]

Pei, Z. X.; Yuan, Z. W.; Wang, C. J.; Zhao, S. L.; Fei, J. Y.; Wei, L.; Chen, J. S.; Wang, C.; Qi, R. J.; Liu, Z. W. et al. A flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angew. Chem., Int. Ed. 2020, 59, 4793–4799.

[13]

Ye, C. L.; Zheng, M.; Li, Z. M.; Fan, Q. K.; Ma, H. Q.; Fu, X. Z.; Wang, D. S.; Wang, J.; Li, Y. D. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202213366.

[14]

Zhang, T.; Liu, Y. P.; Yu, J.; Ye, Q. T.; Yang, L.; Li, Y.; Fan, H. J. Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 2022, 34, 2202195.

[15]

Lei, H.; Wan, Q. X.; Tan, S. Z.; Wang, Z. L.; Mai, W. J. Pt-quantum-dot-modified sulfur-Doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, 2208209.

[16]

Du, J. L.; Xiang, D. L.; Zhou, K. X.; Wang, L. C.; Yu, J. Y.; Xia, H. H.; Zhao, L. L.; Liu, H.; Zhou, W. J. Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 2022, 104, 107875.

[17]

Gao, Y. X.; Zheng, D. B.; Li, Q. C.; Xiao, W. P.; Ma, T. Y.; Fu, Y. L.; Wu, Z. X.; Wang, L. 3D Co3O4-RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn-air battery. Adv. Funct. Mater. 2022, 32, 2203206.

[18]

Zhang, Y. T.; Zhang, Z.; Jiang, G. P.; Mamaghani, A. H.; Sy, S.; Gao, R.; Jiang, Y.; Deng, Y. P.; Bai, Z. Y.; Yang, L. et al. Three-dimensionally ordered mesoporous Co3O4 decorated with Mg as bifunctional oxygen electrocatalysts for high-performance zinc-air batteries. Nano Energy 2022, 100, 107425.

[19]

Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

[20]

Wang, H. F.; Tang, C.; Zhang, Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: Rational design and applications in Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1803329.

[21]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[22]

Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

[23]

Bao, B.; Liu, Y. N.; Sun, M. Z.; Huang, B. L.; Hu, Y.; Da, P. F.; Ji, D. G.; Xi, P. X.; Yan, C. H. Boosting the electrocatalytic oxygen evolution of perovskite LaCo1– x Fe x O3 by the construction of yolk–shell nanostructures and electronic modulation. Small 2022, 18, 2201131.

[24]

Lu, X. F.; Zhang, S. L.; Shangguan, E. B.; Zhang, P.; Gao, S. Y.; Lou, X. W. Nitrogen-doped cobalt pyrite yolk-shell hollow spheres for long-life rechargeable Zn-air batteries. Adv. Sci. 2020, 7, 2001178.

[25]

Zhu, J. B.; Xiao, M. L.; Li, G. R.; Li, S.; Zhang, J.; Liu, G. H.; Ma, L.; Wu, T. P.; Lu, J.; Yu, A. P. et al. A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 2020, 10, 1903003.

[26]

Busch, M.; Halck, N. B.; Kramm, U. I.; Siahrostami, S.; Krtil, P.; Rossmeisl, J. Beyond the top of the volcano?—A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 2016, 29, 126–135.

[27]

Guo, K.; Fan, D. P.; Bao, J. C.; Li, Y. F.; Xu, D. D. Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 2022, 32, 2208057.

[28]

Yang, Q. Y.; Liu, Y. J.; Ou, H.; Li, X. Y.; Lin, X. M.; Zeb, A.; Hu, L. Fe-Based metal-organic frameworks as functional materials for battery applications. Inorg. Chem. Front. 2022, 9, 827–844.

[29]

Lei, H.; Ma, L.; Wan, Q. X.; Huangfu, Z. W.; Tan, S. Z.; Wang, Z. L.; Mai, W. Porous carbon nanofibers confined NiFe alloy nanoparticles as efficient bifunctional electrocatalysts for Zn-air batteries. Nano Energy 2022, 104, 107941.

[30]

Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 2019, 12, 727–738.

[31]

Wang, X. Y.; Li, X. Y.; Mu, J. C.; Fan, S. Y.; Chen, X.; Wang, L.; Yin, Z. F.; Tadé, M.; Liu, S. M. Oxygen vacancy-rich porous Co3O4 nanosheets toward boosted NO reduction by CO and CO oxidation: Insights into the structure-activity relationship and performance enhancement mechanism. ACS Appl. Mater. Interfaces 2019, 11, 41988–41999.

[32]

Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413.

[33]

Chen, L.; Ren, W. Q.; Xu, C. X.; Chen, Q.; Chen, Y. Y.; Wang, W.; Xu, W. Y.; Hou, Z. H. Oxygen vacancy assisted low-temperature synthesis of P-doped Co3O4 with enhanced activity towards oxygen evolution reaction. J. Alloys Compd. 2022, 894, 162038.

[34]

Zhuang, L. Z.; Ge, L. S.; Yang, Y. R.; Li, M.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[35]

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

[36]

Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. 2019, 131, 13978–13982.

[37]

Chen, S. Y.; Lv, C. C.; Liu, L.; Li, M. H.; Liu, J.; Ma, J. Y.; Hao, P. P.; Wang, X.; Ding, W. P.; Xie, M. J. et al. High-temperature treatment to engineer the single-atom Pt coordination environment towards highly efficient hydrogen evolution. J. Energy Chem. 2021, 59, 212–219.

[38]

Wang, D. R.; Deng, Y. P.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Hu, Y. F.; Shakouri, M.; Wang, X.; Chen, Z. W. Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4– δ microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage Mater. 2021, 41, 427–435.

[39]

Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

[40]

Song, W. Q.; Ren, Z.; Chen, S. Y.; Meng, Y. T.; Biswas, S.; Nandi, P.; Elsen, H. A.; Gao, P. X.; Suib, S. L. Ni-and Mn-promoted mesoporous Co3O4: A stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802–20813.

[41]

eo, B. S.; Bell, A. T. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C. 2012, 116, 8394–8400

[42]

Zhu, Y. P.; Chen, H. C.; Hsu, C. S.; Lin, T. S.; Chang, C. J.; Chang, S. C.; Tsai, L. D.; Chen, H. M. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 2019, 4, 987–994.

[43]

Hou, P.; Li, D.; Yang, N. L.; Wan, J. W.; Zhang, C. H.; Zhang, X. Q.; Jiang, H. Y.; Zhang, Q. H.; Gu, L.; Wang, D. Delicate control on the shell structure of hollow spheres enables tunable mass transport in water splitting. Angew. Chem., Int. Ed. 2021, 60, 6926–6931.

[44]

Li, J. C.; Li, M.; An, N.; Zhang, S.; Song, Q. N.; Yang, Y. L.; Li, J.; Liu, X. Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. USA 2022, 119, e2123450119.

[45]

Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

[46]

Lin, Z.; Wang, Y. Q.; Peng, Z. M.; Huang, Y. C.; Meng, F. Q.; Chen, J. L.; Dong, C. L.; Zhang, Q. H.; Wang, R. Z.; Zhao, D. M. et al. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv. Energy Mater. 2022, 12, 2200716.

[47]

Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

[48]

Liu, Y.; Wu, X.; Guo, X.; Lee, K.; Sun, Q.; Li, X.; Zhang, C.; Wang, Z.; Hu, J.; Zhu, Y. et al. Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts. Mater. Today Energy 2021, 19, 100610.

[49]

Li, X. F.; Liu, Y. J.; Chen, H. B.; Yang, M.; Yang, D. G.; Li, H. M.; Lin, Z. Q. Rechargeable Zn-Air batteries with outstanding cycling stability enabled by ultrafine feni nanoparticles-encapsulated N-Doped carbon nanosheets as a bifunctional electrocatalyst. Nano Lett. 2021, 21, 3098–3105.

[50]

Tian, Y. H.; Xu, L.; Li, M.; Yuan, D.; Liu, X. H.; Qian, J. C.; Dou, Y. H.; Qiu, J. X.; Zhang, S. Q. Interface engineering of CoS/CoO@N-Doped graphene nanocomposite for high-performance rechargeable Zn-Air batteries. Nano-Micro Lett. 2020, 13, 3.

[51]

Pan, F. P.; Li, Z.; Yang, Z. Z.; Ma, Q.; Wang, M. Y.; Wang, H.; Olszta, M.; Wang, G. Z.; Feng, Z. X.; Du, Y. G. et al. Porous FeCo glassy alloy as bifunctional support for high-performance Zn-air battery. Adv. Energy Mater. 2021, 11, 2002204.

[52]

Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

[53]

Niu, Y.; Xiao, M. L.; Zhu, J. B.; Zeng, T. T.; Li, J. D.; Zhang, W. Y.; Su, D.; Yu, A. P.; Chen, Z. W. A "trimurti" heterostructured hybrid with an intimate CoO/Co x P interface as a robust bifunctional air electrode for rechargeable Zn-air batteries. J. Mater. Chem. A 2020, 8, 9177–9184.

[54]

Xiao, X.; Li, X. H.; Wang, Z. X.; Yan, G. C.; Guo, H. J.; Hu, Q. Y.; Li, L. J.; Liu, Y.; Wang, J. X. Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Appl. Catal. B: Environ. 2020, 265, 118603.

[55]

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N Doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

[56]

Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew. Chem., Int. Ed. 2016, 55, 4087–4091.

[57]

Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.

[58]

Cai, P. W.; Hong, Y.; Ci, S.; Wen, Z. H. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries. Nanoscale 2016, 8, 20048–20055

[59]

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

[60]

Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D. et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2101239.

[61]

Tian, Y. H.; Wu, Z. Z.; Li, M.; Sun, Q.; Chen, H.; Yuan, D.; Deng, D. J.; Johannessen, B.; Wang, Y.; Zhong, Y. L. et al. Atomic modulation and structure design of Fe-N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2209273.

[62]

Sun, H. N.; Li, L. L.; Chen, Y. H.; Kim, H.; Xu, X. M.; Guan, D. Q.; Hu, Z. W.; Zhang, L. J.; Shao, Z. P.; Jung, W. C. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B: Environ. 2023, 325, 122388.

[63]

Cui, Y.; Xue, Y.; Zhang, R.; Zhang, J.; Li, X. A.; Zhu, X. B. Vanadium-cobalt oxyhydroxide shows ultralow overpotential for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 21911–21917.

[64]

Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A. et al. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction. J. Phys. Chem. C 2016, 120, 2247–2253.

[65]

Wang, Y.; Yang, R.; Ding, Y. J.; Zhang, B.; Li, H.; Bai, B.; Li, M. R.; Cui, Y.; Xiao, J. P.; Wu, Z. S. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.

[66]

Wu, K. L.; Wang, X.; Wang, W. Q.; Luo, Y.; Cao, W.; Cao, Y. Y.; Xie, H. J.; Yan, Y.; Lin, H. J.; Zhu, J. X. et al. Charge regulation on hybrid nanosheet stereoassembly via interfacial P-O coupling enables efficient overall water splitting. Adv. Funct. Mater. 2023, 33, 2214075.

[67]

Lei, H.; Li, J. L.; Zhang, X. Y.; Ma, L.; Ji, Z.; Wang, Z. L.; Pan, L. K.; Tan, S. Z.; Mai, W. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InfoMat 2022, 4, e12272.

[68]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[69]

Zhang, Y.; Hu, Y. X.; Wang, Z. L.; Lin, T.; Zhu, X. B.; Luo, B.; Hu, H.; Xing, W.; Yan, Z. F.; Wang, L. Z. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172.

File
12274_2023_6331_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2023
Revised: 30 October 2023
Accepted: 12 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Natural Science Foundation of Guangdong Province (Nos. 2021A1515010504 and 2022A1515010049), the National Natural Science Foundation of China (Nos. 21706090, 52172202, and 51872124), the Major Technological Innovation Project of Hubei Science and Technology Department (No. 2019AAA164), the Natural Science Foundation of Guangzhou (No. 201904010049). The authors would like to thank Qian Liu from Shiyanjia Lab (www.shiyanjia.com) for his support of TEM measurement.

Return