AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lattice-distorted Pt wrinkled nanoparticles for highly effective hydrogen electrocatalysis

Xue Li1,§Xiang Han1,§Zhenrui Yang1Shun Wang1Yun Yang1Juan Wang1( )Jiadong Chen2( )Zhongwei Chen3( )Huile Jin1,2( )
Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Institute of New Materials and Industry Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

§ Xue Li and Xiang Han contributed equally to this work.

Show Author Information

Graphical Abstract

The lattice-distorted Pt wrinkled nanoparticles (LD-Pt WNPs) was successfully realized as highly efficient catalysts for hydrogen electrocatalysis, on which lattice-distorted optimize the adsorption of intermediates and reduce the energy barrier of Volmer step, thereby promoting the reaction kinetics of hydrogen evolution reaction and hydrogen oxidation reaction.

Abstract

Modulating Pt surfaces through the introduction of lattice distortion emerges as immensely effective strategy that enhances the kinetics of alkaline hydrogen evolution and oxidation processes. In this study, we fabricated lattice-distorted Pt wrinkled nanoparticles (LD-Pt WNPs) for efficient hydrogen electrocatalysis. The LD-Pt WNPs not only outperform the Pt/C benchmark in hydrogen oxidation reaction, achieving an excellent mass-specific current of 968.5 mA·mgPt−1 (9 times that of Pt/C), but also demonstrate outstanding hydrogen evolution reaction activity with a small overpotential of 58.0 mV. Comprehensive experiments and density functional theory calculations reveal that lattice defects introduce an abundance of unsaturated coordination atoms while modifying the d-band center of Pt. This dual effect optimizes the binding strength of crucial H and OH intermediates, leading to a significant reduction in the energy barrier of the reaction bottleneck, commonly known as the Volmer step. This work unveils a fresh viewpoint on projecting and developing high efficiency electrocatalysts through defect engineering.

Electronic Supplementary Material

Download File(s)
12274_2023_6328_MOESM1_ESM.pdf (4.9 MB)

References

[1]

Lv, F.; Sun, M. Z.; Hu, Y. P.; Xu, J.; Huang, W.; Han, N.; Huang, B. L.; Li, Y. G. Near-unity electrochemical conversion of nitrate to ammonia on crystalline nickel porphyrin-based covalent organic frameworks. Energy Environ. Sci. 2023, 16, 201–209.

[2]

Liu, M. C.; Lei, Z. P.; Ke, Q. P.; Cui, P. X.; Wang, J. C.; Yan, J. C.; Li, Z. K.; Shui, H. F.; Ren, S. B.; Wang, Z. C. et al. Regulation of hydrogen evolution performance of titanium oxide-carbon composites at high current density with a Ti-O hybrid orbital. Carbon Energy 2022, 4, 480–490.

[3]

Wu, Z. X.; Gao, Y. X.; Wang, Z. X.; Xiao, W. P.; Wang, X. P.; Li, B.; Li, Z. J.; Liu, X. B.; Ma, T. Y.; Wang, L. Surface‐enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn‐air battery. Chin. J. Catal. 2023, 46, 36–47.

[4]

Liu, T. F.; Sang, J. Q.; Li, H. F.; Wei, P. F.; Zang, Y. P.; Wang, G. X. Towards understanding of CO2 electroreduction to C2+ products on copper-based catalysts. Battery Energy 2022, 1, 20220012.

[5]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Dou, S.; Sun, L. B.; Chen, W.; Yuan, K. D.; Dai, Z. F.; Wang, X. Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. Carbon Energy 2019, 1, 77–84.

[6]

Liu, S. Y.; Shui, J. L. Mechanism and properties of emerging nanostructured hydrogen storage materials. Battery Energy 2022, 1, 20220033.

[7]

He, X. D.; Zhang, Y. J.; Wang, J.; Li, J.; Yu, L. H.; Zhou, F.; Li, J.; Shen, X. J.; Wang, X.; Wang, S. et al. Biomass-derived Fe2N@NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn-air battery. ACS Sustainable Chem. Eng. 2022, 10, 9105–9112.

[8]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[9]

Ali, A.; Shen, P. K. Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2020, 2, 99–121.

[10]

Wang, M.; Yang, H.; Shi, J. N.; Chen, Y. F.; Zhou, Y.; Wang, L. G.; Di, S. J.; Zhao, X.; Zhong, J.; Cheng, T. et al. Alloying nickel with molybdenum significantly accelerates alkaline hydrogen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5771–5777.

[11]
Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 2020 , 71, 104653.
[12]

Wang, H. Z.; Yang, P. F.; Sun, X. Y.; Xiao, W. P.; Wang, X. P.; Tian, M. G.; Xu, G. R.; Li, Z. J.; Zhang, Y. B.; Liu, F. S. et al. Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction. J. Energy Chem. 2023, 87, 286–294.

[13]

Wu, Z. X.; Nie, D. Z.; Song, M.; Jiao, T. T.; Fu, G. T.; Liu, X. E. Facile synthesis of Co-Fe-B-P nanochains as an efficient bifunctional electrocatalyst for overall water-splitting. Nanoscale 2019, 11, 7506–7512.

[14]

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

[15]

Wang, Q. L.; Wang, H. W.; Cao, H.; Tung, C. W.; Liu, W.; Hung, S. F.; Wang, W. J.; Zhu, C.; Zhang, Z. H.; Cai, W. Z. et al. Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 2023, 6, 916–926.

[16]

Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang, X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014, 4, 1693–1705.

[17]

Su, L.; Cui, X. Z.; He, T.; Zeng, L. M.; Tian, H.; Song, Y. L.; Qi, K.; Xia, B. Y. Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chem. Sci. 2019, 10, 2019–2024.

[18]

Chen, J. D.; Yu, D. N.; Liao, W. S.; Zheng, M. D.; Xiao, L. F.; Zhu, H.; Zhang, M.; Du, M. L.; Yao, J. M. WO3- x nanoplates grown on carbon nanofibers for an efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139.

[19]

Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529.

[20]

Chen, R.; Yang, C. J.; Cai, W. Z.; Wang, H. Y.; Miao, J. W.; Zhang, L. P.; Chen, S. L.; Liu, B. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett. 2017, 2, 1070–1075.

[21]

Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

[22]

Kuang, P. Y.; Ni, Z. R.; Zhu, B. C.; Lin, Y.; Yu, J. G. Modulating the d-band center enables ultrafine Pt3Fe alloy nanoparticles for pH-universal hydrogen evolution reaction. Adv. Mater. 2023, 35, 2303030.

[23]

He, X. D.; Han, X.; Zhou, X. Y.; Chen, J. D.; Wang, J.; Chen, Y.; Yu, L. H.; Zhang, N.; Li, J.; Wang, S. et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA cm-2. Appl. Catal. B Environ. 2023, 331, 122683.

[24]

Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. Q. et al. Three-dimensional open Nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.

[25]

Wang, K. C.; Yang, H.; Zhang, J. T.; Ren, G. M.; Cheng, T.; Xu, Y.; Huang, X. Q. The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation. Nano Res. 2022, 15, 5865–5872.

[26]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[27]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2022, 142, 12087–12095.

[28]

Li, H. J.; Huang, H. G.; Chen, Y.; Lai, F. L.; Fu, H.; Zhang, L. S.; Zhang, N.; Bai, S. X.; Liu, T. X. High-entropy alloy aerogels: A new platform for carbon dioxide reduction. Adv. Mater. 2023, 35, 2209242.

[29]

Choi, C.; Cheng, T.; Espinosa, M. F.; Fei, H. L.; Duan, X. F.; Goddard III, W. A.; Huang, Y. A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 2019, 31, 1805405.

[30]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

[31]

Ni, W. Y.; Meibom, J. L.; Hassan, N. U.; Chang, M.; Chu, Y. C.; Krammer, A.; Sun, S. L.; Zheng, Y. W.; Bai, L. C.; Ma, W. C. et al. Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation. Nat. Catal. 2023, 6, 773–783.

[32]
Wang, J.; Gan, L. Y.; Zhang, W. Y.; Peng, Y. C.; Yu, H.; Yan, Q. Y.; Xia, X. H.; Wang, X. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 2018 , 4, eaap7970.
[33]

Liu, S. B.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem., Int. Ed. 2019, 58, 8499–8503.

[34]

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe Oxide @ 2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

[35]
Wang, J.; Cheng, C.; Yuan, Q.; Yang, H.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Cao, J. L.; Li, L. G.; Haw, S. C. et al. Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. Chem 2022 , 8, 1673–1687.
[36]

Fu, H.; Zhang, N.; Lai, F. L.; Zhang, L. S.; Chen, S. L.; Li, H. J.; Jiang, K. Z.; Zhu, T.; Xu, F. P.; Liu, T. X. Surface-regulated platinum-copper nanoframes in electrochemical reforming of ethanol for efficient hydrogen production. ACS Catal. 2022, 12, 11402–11411.

[37]

Jin, M. Y.; Teng, M. Y.; Wang, S.; Yang, K. Q.; Wang, J.; Jin, H. L. Interface engineering of crystalline/amorphous Pt/TeO x nanocapsules for efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 16593–16600.

Nano Research
Pages 3819-3826
Cite this article:
Li X, Han X, Yang Z, et al. Lattice-distorted Pt wrinkled nanoparticles for highly effective hydrogen electrocatalysis. Nano Research, 2024, 17(5): 3819-3826. https://doi.org/10.1007/s12274-023-6328-0
Topics:

912

Views

4

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 22 September 2023
Revised: 08 November 2023
Accepted: 09 November 2023
Published: 02 January 2024
© Tsinghua University Press 2023
Return