Journal Home > Volume 17 , Issue 5

Iron-chromium redox flow batteries (ICRFBs) have emerged as promising energy storage devices due to their safety, environmental protection, and reliable performance. The carbon cloth (CC), often used in ICRFBs as the electrode, provides a suitable platform for electrochemical processes owing to its high surface area and interconnected porous structure. However, the CC electrodes have issues, such as, insufficient electron transfer performance, which limits their industrial application. Here, we employed silicic acid etching to carve dense nano-porous structures on the surface of CC electrodes based on the favorable design of ICRFBs and the fundamental principles of electrode polarization losses. As a result, we developed a multifunctional carbon cloth electrode with abundant vacancies, notably enhancing the performance of the battery. The fabricated electrode showcased a wealth of defect sites and superior electronic transport properties, offering an extensive and effective reaction area for rapidly flowing electrolytes. With an electrode compression ratio of 40% and the highest current density in ICRFBs so far (140 mA·cm−2), the battery achieved the average energy efficiency of 81.3%, 11.24% enhancement over the previously published work. Furthermore, throughout 100 charge–discharge cycles, the average energy efficiency degradation was negligible (~ 0.04%), which has the potential to become the most promising candidate for large-scale and long-term electrochemical energy storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of highly effective electrodes for iron chromium redox flow battery

Show Author's information Yingchun Niu,§Chao Guo,§Yinping LiuGuangfu WuTianhang ZhouFangang QuZiji YangAli HeydariChunming XuQuan Xu( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China

§ Yingchun Niu and Chao Guo contributed equally to this work.

Abstract

Iron-chromium redox flow batteries (ICRFBs) have emerged as promising energy storage devices due to their safety, environmental protection, and reliable performance. The carbon cloth (CC), often used in ICRFBs as the electrode, provides a suitable platform for electrochemical processes owing to its high surface area and interconnected porous structure. However, the CC electrodes have issues, such as, insufficient electron transfer performance, which limits their industrial application. Here, we employed silicic acid etching to carve dense nano-porous structures on the surface of CC electrodes based on the favorable design of ICRFBs and the fundamental principles of electrode polarization losses. As a result, we developed a multifunctional carbon cloth electrode with abundant vacancies, notably enhancing the performance of the battery. The fabricated electrode showcased a wealth of defect sites and superior electronic transport properties, offering an extensive and effective reaction area for rapidly flowing electrolytes. With an electrode compression ratio of 40% and the highest current density in ICRFBs so far (140 mA·cm−2), the battery achieved the average energy efficiency of 81.3%, 11.24% enhancement over the previously published work. Furthermore, throughout 100 charge–discharge cycles, the average energy efficiency degradation was negligible (~ 0.04%), which has the potential to become the most promising candidate for large-scale and long-term electrochemical energy storage applications.

Keywords: density functional theory (DFT) calculation, carbon cloth, electron, redox flow battery, defect site, iron chromium

References(56)

[1]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381

[2]

Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.

[3]

Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic–inorganic aqueous flow battery. Nature 2014, 505, 195–198.

[4]

Lv, J. Q.; Xie, J. F.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. B. Photoelectrochemical energy storage materials: Design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 2022, 51, 1511–1528.

[5]

Zhao, E. W.; Liu, T.; Jónsson, E.; Lee, J.; Temprano, I.; Jethwa, R. B.; Wang, A. Q.; Smith, H.; Carretero-González, J.; Song, Q. L. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 2020, 579, 224–228

[6]

Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Aqueous organic redox flow batteries. Nano Res. 2019, 12, 1988–2001.

[7]

Davies, D. M.; Verde, M. G.; Mnyshenko, O.; Chen, Y. R.; Rajeev, R.; Meng, Y. S.; Elliott, G. Combined economic and technological evaluation of battery energy storage for grid applications. Nat. Energy 2018, 4, 42–50.

[8]

Ziegler, M. S. Evaluating and improving technologies for energy storage and backup power. Joule 2021, 5, 1925–1927.

[9]

Jia, Y. R.; Zhang, J.; Kong, D. B.; Zhang, C.; Han, D. L.; Han, J. W.; Tao, Y.; Lv, W.; Yang Q. H. Practical graphene technologies for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204272.

[10]

Zhang, Z. Y.; Ding, T.; Zhou, Q.; Sun, Y. G.; Qu, M.; Zeng, Z. Y.; Ju, Y. T.; Li, L.; Wang, K.; Chi, F. D. A review of technologies and applications on versatile energy storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111263.

[11]

Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

[12]

Nikiforidis, G.; van de Sanden, M. C. M.; Tsampas, M. N. High and intermediate temperature sodium-sulfur batteries for energy storage: Development, challenges and perspectives. RSC Adv. 2019, 9, 5649–5673.

[13]

Yokoshima, T.; Mukoyama, D.; Nara, H.; Maeda, S.; Nakazawa, K.; Momma, T.; Osaka, T. Impedance measurements of kilowatt-class lithium ion battery modules/cubicles in energy storage systems by square-current electrochemical impedance spectroscopy. Electrochim. Acta 2017, 246, 800–811.

[14]

Tang, G. G.; Yang, Z. J.; Xu, T. W. Two-electron storage electrolytes for aqueous organic redox flow batteries. Cell Rep. Phys. Sci. 2022, 3, 101195.

[15]

Li, B.; Liu, J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. Natl. Sci. Rev. 2017, 4, 91–105.

[16]

Liu, X. Q.; Li, T. Y.; Yuan, Z. Z.; Li, X. F. Low-cost all-iron flow battery with high performance towards long-duration energy storage. J. Energy Chem. 2022, 73, 445–451.

[17]

Kuzmin, I.; Loskutov, A.; Osetrov, E.; Kurkin, A. Source for autonomous power supply system based on flow battery. Energies 2022, 15, 3027.

[18]

Waters, S. E.; Robb, B. H.; Marshak, M. P. Effect of chelation on iron-chromium redox flow batteries. ACS Energy Lett. 2020, 5, 1758–1762.

[19]

Liu, Y. Y.; Xu, J.; Lu, S. F.; Xiang, Y. Titanium nitride nanorods array-decorated graphite felt as highly efficient negative electrode for iron-chromium redox flow battery. Small 2023, 19, 2300943.

[20]

Liu, Y. P.; Niu, Y. C.; Ouyang, X. C.; Guo, C.; Han, P. Y.; Zhou, R. C.; Heydari, A.; Zhou, Y.; Ikkala, O.; Tigranovich, G. A. et al. Progress of organic, inorganic redox flow battery and mechanism of electrode reaction. Nano Res. Energy 2023, 2, e9120081.

[21]

Kong, T.; Wang, Y. X.; Liu, S. N.; Liu, Y.; Zhou, M. H.; Li, B. F.; Duan, X. G.; Chen, C. M.; Wang, S. B. Electron transfer to direct oxidation of aqueous organics by perovskites. Nano Res. 2023, 16, 6316–6325.

[22]

Xie, C. Y.; Yan, H.; Song, T. F.; Song, Y. X.; Yan, C. W.; Tang, A. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries. J. Power Sources 2023, 564, 232860.

[23]

Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries. J. Power Sources 2017, 352, 77–82.

[24]

Zhang, H.; Chen, N.; Sun, C. Y.; Luo, X. D. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron‐chromium redox flow battery. Int. J. Energy Res. 2020, 44, 3839–3853.

[25]

Zhang, H.; Tan, Y.; Luo, X. D.; Sun, C. Y.; Chen, N. Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 2019, 6, 3175–3188.

[26]

Dinesh, A.; Anantha, M. S.; Santosh, M. S.; Priya, M. G.; Venkatesh, K.; Yogesh Kumar, K. S.; Raghu, M. S.; Muralidhara, H. B. Improved performance of iron-based redox flow batteries using WO3 nanoparticles decorated graphite felt electrode. Ceram. Int. 2021, 47, 10250–10260.

[27]
Hossain, H.; Abdullah, N.; Tan, K. H.; Saidur, R.; Mohd Radzi, M. A.; Shafie, S. Evolution of vanadium redox flow battery in electrode. Chem. Record, in press, DOI: 10.1002/tcr.202300092.
[28]

Sheng, H.; Ma, Q.; Yu, J. G.; Zhang, X. D.; Zhang, W.; Yin, Y. X.; Wu, X. W.; Zeng, X. X.; Guo, Y. G. Robust electrodes with maximized spatial catalysis for vanadium redox flow batteries. ACS Appl. Mater. Interfaces 2018, 10, 38922–38927.

[29]

Cao, X.; Jie, Y.; Ma, P. Power generation by contact and the potential applications in new energy. Nano Energy 2021, 87, 106167.

[30]

Emmel, D.; Hofmann, J. D.; Arlt, T.; Manke, I.; Wehinger, G. D.; Schröder, D. Understanding the Impact of compression on the active area of carbon felt electrodes for redox flow batteries. ACS Appl. Energy Mater. 2020, 3, 4384–4393.

[31]

Yue, M.; Lv, Z. Q.; Zheng, Q.; Li, X. F.; Zhang, H. M. Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries. Appl. Energy 2019, 235, 495–508.

[32]

Maruyama, J.; Maruyama, S.; Fukuhara, T.; Hanafusa, K. Efficient edge plane exposure on graphitic carbon fiber for enhanced flow-battery reactions. J. Phys. Chem. C 2017, 121, 24425–24433.

[33]

Lee, K. M.; Pahlevaninezhad, M.; Smith, V.; Abouali, S.; Orfino, F. P.; Kjeang, E.; Pope, M. A.; Roberts, E. P. L.; Gostick, J. T. Improvement of vanadium redox flow battery performance obtained by compression and laser perforation of electrospun electrodes. Mater. Today Energy 2023, 35, 101333.

[34]

Hao, H. H.; Zhang, Q. A.; Feng, Z. Y.; Tang, A. Regulating flow field design on carbon felt electrode towards high power density operation of vanadium flow batteries. Chem. Eng. J. 2022, 450, 138170.

[35]

Long, T.; Long, Y.; Ding, M.; Xu, Z. Z.; Xu, J.; Zhang, Y. Q.; Bai, M. L.; Sun, Q. J.; Chen, G.; Jia, C. K. Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Res. 2021, 14, 3538–3544.

[36]

He, Z. X.; Chen, Z. S.; Meng, W.; Jiang, Y. Q.; Cheng, G.; Dai, L.; Wang, L. Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries. J. Energy Chem. 2016, 25, 720–725.

[37]

Zhang, D.; Cai, Q.; Taiwo, O. O.; Yufit, V.; Brandon, N. P.; Gu, S. The effect of wetting area in carbon paper electrode on the performance of vanadium redox flow batteries: A three-dimensional lattice Boltzmann study. Electrochim. Acta 2018, 283, 1806–1819.

[38]

Xu, Q.; Wang, S. Y.; Xu, C. M.; Chen, X. Y.; Zeng, S. W.; Li, C. Y.; Zhou, T.; Zhou, T. H.; Niu, Y. C. Synergistic effect of electrode defect regulation and Bi catalyst deposition on the performance of iron-chromium redox flow battery. Chin. Chem. Lett. 2023, 34, 108188.

[39]

Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries. J. Power Sources 2016, 329, 247–254.

[40]

Guo, X. S.; Wang, L.; Zeng, J.; Shao, Y. L.; Cui, W. Y.; Zhang, C.; Wang, W. J.; Hao, C. C.; Li, G. C. Defect-rich MoS x /carbon nanofiber arrays on carbon cloth for highly efficient electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2018, 43, 23118–23125.

[41]

Li, W. Y.; Wu, T. X.; Zhang, S. B.; Liu, Y. Y.; Zhao, C. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem. Commun. 2018, 54, 11188–11191.

[42]

Long, B.; Ma, J. F.; Song, T.; Wang, X. Y.; Tong, Y. X. Tailoring superficial morphology, defect and functional group of commercial carbon cloth for a flexible, stable and high-capacity anode in sodium ion battery. Electrochim. Acta 2021, 374, 137934.

[43]

Liu, L. S.; Zhang, X. H.; Zhang, D. H.; Zhang, K. Y.; Hou, S. Y.; Wang, S. L.; Zhang, Y. F.; Peng, H. Q.; Liu, J. G.; Yan, C. W. Regulating the N/B ratio to construct B, N co-doped carbon nanotubes on carbon felt for high-performance vanadium redox flow batteries. Chem. Eng. J. 2023, 473, 145454.

[44]

Lu, W. J.; Xu, P. C.; Shao, S. Y.; Li, T. Y.; Zhang, H. M.; Li, X. F. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc‐bromine flow battery with ultrahigh power density. Adv. Funct. Mater. 2021, 31, 2102913.

[45]

Gursu, H.; Gencten, M.; Sahin, Y. Synthesis of phosphorus doped graphenes via the Yucel’s method as the positive electrode of a vanadium redox flow battery. J. Electrochem. Soc. 2021, 168, 060504.

[46]

Hassan, A.; Haile, A. S.; Tzedakis, T.; Hansen, H. A.; de Silva, P. The role of oxygenic groups and sp3 carbon hybridization in activated graphite electrodes for vanadium redox flow batteries. ChemSusChem 2021, 14, 3945–3952.

[47]

Zhi, L. P.; Li, T. Y.; Liu, X. Q.; Yuan, Z. Z.; Li, X. F. Functional complexed zincate ions enable dendrite-free long cycle alkaline zinc-based flow batteries. Nano Energy 2022, 102, 107697.

[48]

Yuan, F.; Shi, C. H.; Li, Q. L.; Wang, J.; Zhang, D.; Wang, Q. J.; Wang, H.; Li, Z. J.; Wang, W.; Wang, B. Unraveling the effect of intrinsic carbon defects on potassium storage performance. Adv. Funct. Mater. 2022, 32, 2208966.

[49]

Cheng, G. Z.; Zhang, W. Z.; Wang, W.; Wang, H. L.; Wang, Y. X.; Shi, J.; Chen, J. W.; Liu, S.; Huang, M. H.; Mitlin, D. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 2022, 4, 986–1001.

[50]

Zhang, W. L.; Cao, Z.; Wang, W. X.; Alhajji, E.; Emwas, A. H.; Costa, P. M. E. J.; Cavallo, L.; Alshareef, H. N. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem. 2020, 132, 4478–4485.

[51]

Zhong, Y. L.; Dai, W. X.; Liu, D.; Wang, W.; Wang, L. T.; Xie, J. P.; Li, R.; Yuan, Q. L.; Hong, G. Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries. Small 2021, 17, 2101576.

[52]

Kim, S.; Hood, S. N.; Park, J. S.; Whalley, L. D.; Walsh, A. Quick-start guide for first-principles modelling of point defects in crystalline materials. J. Phys.: Energy 2020, 2, 036001.

[53]

Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Dislocation-driven deformations in graphene. Science 2012, 337, 209–212.

[54]

Li, Z.; Guo, L. L.; Chen, N.; Su, Y.; Wang, X. M. Boric acid thermal etching graphite felt as a high-performance electrode for iron-chromium redox flow battery. Mater. Res. Express 2022, 9, 025601.

[55]

Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.

[56]

Brown, L. D.; Neville, T. P.; Jervis, R.; Mason, T. J.; Shearing, P. R.; Brett, D. J. L. The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries. J. Energy Storage 2016, 8, 91–98.

File
12274_2023_6324_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 October 2023
Revised: 26 October 2023
Accepted: 06 November 2023
Published: 13 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 22308378, 22308380, and 52211530034).

Return