Journal Home > Volume 17 , Issue 5

Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions, nevertheless confronting great challenges in efficiently activating C–H bonds and inhibiting over-oxidation. Herein, we propose a comprehensive strategy for the selective generation of reactive oxygen species (ROS) by regulating the sizes and facets of Au nanoparticles loaded on ZnO. For photocatalytic methane oxidation at ambient temperature, a high oxygenates yield of 36.4 mmol·g−1·h−1 with a nearly 100% selectivity has been achieved over the optimized 1.0% Au/ZnO-9.6 (1% Au with (111) facet and 9.6 nm size on ZnO) photocatalyst, exceeding most reported literatures. Mechanism investigations reveal that 1.0% Au/ZnO-9.6 with the medium size and Au (111) facet guarantees the favourable formation of superoxide radicals (·OOH) through mild oxygen reduction, ultimately leading to excellent photocatalytic methane oxidation performance. This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective photocatalytic oxidation of methane to C1 oxygenates by regulating sizes and facets over Au/ZnO

Show Author's information Qiang Zhou1Xinyu Wang1Xiaojie Tan1Qinhua Zhang1Hao Yang1Tao Xing2Mingqing Wang2Mingbo Wu1( )Wenting Wu1( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering & Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, ShanDong Energy Group CO. LTD, Jinan 250101, China

Abstract

Photocatalytic oxidation of methane to value-added chemicals is a promising process under mild conditions, nevertheless confronting great challenges in efficiently activating C–H bonds and inhibiting over-oxidation. Herein, we propose a comprehensive strategy for the selective generation of reactive oxygen species (ROS) by regulating the sizes and facets of Au nanoparticles loaded on ZnO. For photocatalytic methane oxidation at ambient temperature, a high oxygenates yield of 36.4 mmol·g−1·h−1 with a nearly 100% selectivity has been achieved over the optimized 1.0% Au/ZnO-9.6 (1% Au with (111) facet and 9.6 nm size on ZnO) photocatalyst, exceeding most reported literatures. Mechanism investigations reveal that 1.0% Au/ZnO-9.6 with the medium size and Au (111) facet guarantees the favourable formation of superoxide radicals (·OOH) through mild oxygen reduction, ultimately leading to excellent photocatalytic methane oxidation performance. This work provides some guidance for the delicate design of photocatalysts for efficient photocatalytic methane oxidation and oxygen utilization.

Keywords: nanomaterial, photocatalysis, oxygen activation, methane oxidation, radical regulation

References(44)

[1]

Dummer, N. F.; Willock, D. J.; He, Q.; Howard, M. J.; Lewis, R. J.; Qi, G. D.; Taylor, S. H.; Xu, J.; Bethell, D.; Kiely, C. J. et al. Methane oxidation to methanol. Chem. Rev. 2023, 123, 6359–6411.

[2]

Li, X. Y.; Wang, C.; Tang, J. W. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617–632.

[3]

Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

[4]

Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

[5]

Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591.

[6]

Meng, X. G.; Cui, X. J.; Rajan, N. P.; Yu, L.; Deng, D. H.; Bao, X. H. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296–2325.

[7]

Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

[8]

Qi, G. D.; Davies, T. E.; Nasrallah, A.; Sainna, M. A.; Howe, A. G. R.; Lewis, R. J.; Quesne, M.; Catlow, C. R. A.; Willock, D. J.; He, Q. et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nat. Catal. 2022, 5, 45–54.

[9]

Song, H.; Meng, X. G.; Wang, Z. J.; Liu, H. M.; Ye, J. H. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606–1636.

[10]

Fan, Y. Y.; Zhou, W. C.; Qiu, X. Y.; Li, H. D.; Jiang, Y. H.; Sun, Z. H.; Han, D. X.; Niu, L.; Tang, Z. Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509–515.

[11]

Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592–1602.

[12]

An, B.; Zhang, Q. H.; Zheng, B. S.; Li, M.; Xi, Y. Y.; Jin, X.; Xue, S.; Li, Z. T.; Wu, M. B.; Wu, W. T. Sulfone-decorated conjugated organic polymers activate oxygen for photocatalytic methane conversion. Angew. Chem., Int. Ed. 2022, 61, e202204661.

[13]

Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889–896.

[14]
Guo, H. M.; Wu, L.; Nie, S. Y.; Yang, D. R.; Wang, X. Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO. Nano Res., in press, DOI: 10.1007/s12274-023-5929-y.
[15]

Luo, L.; Fu, L.; Liu, H. F.; Xu, Y. X.; Xing, J. L.; Chang, C. R.; Yang, D. Y.; Tang, J. W. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

[16]

Jiang, Y. H.; Li, S. Y.; Wang, S. K.; Zhang, Y.; Long, C.; Xie, J.; Fan, X. Y.; Zhao, W. S.; Xu, P.; Fan, Y. Y. et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698–2707.

[17]

Feng, N. D.; Lin, H. W.; Song, H.; Yang, L. X.; Tang, D. M.; Deng, F.; Ye, J. H. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652.

[18]

Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.

[19]

Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

[20]

Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.

[21]

Jiang, W. B.; Low, J.; Mao, K. K.; Duan, D. L.; Chen, S. M.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S. K.; Shu, C. et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 2021, 143, 269–278.

[22]

Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Wang, X. S.; Kako, T.; Ye, J. H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507–20515.

[23]

Luo, L.; Han, X. Y.; Wang, K. R.; Xu, Y. X.; Xiong, L. Q.; Ma, J. N.; Guo, Z. X.; Tang, J. W. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690.

[24]

Song, H.; Huang, H. M.; Meng, X. G.; Wang, Q.; Hu, H. L.; Wang, S. Y.; Zhang, H. W.; Jewasuwan, W.; Fukata, N.; Feng, N. D. et al. Atomically dispersed nickel anchored on a nitrogen-doped carbon/TiO2 composite for efficient and selective photocatalytic CH4 oxidation to oxygenates. Angew. Chem., Int. Ed. 2023, 62, e202215057.

[25]

Song, H.; Meng, X. G.; Wang, S. Y.; Zhou, W.; Song, S.; Kako, T.; Ye, J. H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS Catal. 2020, 10, 14318–14326.

[26]

Lin, S. R.; Tristan, J. B.; Wang, Y.; Bao, J. L. Dry reforming of methane on doped Ni nanoparticles: Feature-assisted optimizations and ranking of doping metals for direct activations of CH4 and CO2. Nano Res. 2022, 15, 9670–9682.

[27]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

[28]
Montemore, M. M.; Van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 2018 , 118, 2816–2862.
[29]

Xing, Y. C.; Yao, Z.; Li, W. Y.; Wu, W. T.; Lu, X. Q.; Tian, J.; Li, Z. T.; Hu, H.; Wu, M. B. Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem., Int. Ed. 2021, 133, 8971–8977.

[30]

Wu, X. Y.; Zeng, Y.; Liu, H. C.; Zhao, J. Q.; Zhang, T. R.; Wang, S. L. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 2021, 14, 4584–4590.

[31]

Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C. et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987.

[32]

Chen, S. L.; Abdel-Mageed, A. M.; Mochizuki, C.; Ishida, T.; Murayama, T.; Rabeah, J.; Parlinska-Wojtan, M.; Brückner, A.; Behm, R. J. Controlling the O-vacancy formation and performance of Au/ZnO catalysts in CO2 reduction to methanol by the ZnO particle size. ACS Catal. 2021, 11, 9022–9033.

[33]

Li, Z. H.; Boda, M. A.; Pan, X. Y.; Yi, Z. G. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: The difference between methane and ethylene and the impact of polar and nonpolar facets. ACS Sustainable Chem. Eng. 2019, 7, 19042–19049.

[34]

Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 2020, 120, 464–525.

[35]

Feng, X.; Yang, J.; Duan, X. Z.; Cao, Y. Q.; Chen, B. X.; Chen, W. Y.; Lin, D.; Qian, G.; Chen, D.; Yang, C. H. et al. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au-Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018, 8, 7799–7808.

[36]

Ma, J. Y.; Tan, X. J.; Zhang, Q. Q.; Wang, Y.; Zhang, J. L.; Wang, L. Z. Exploring the size effect of pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal. 2021, 11, 3352–3360.

[37]
Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. Nano Res. 2021 , 14, 1167–1174.
[38]

Liu, Y. Q.; Ma, H. Y.; Lei, D.; Lou, L. L.; Liu, S. X.; Zhou, W. Z.; Wang, G. C.; Yu, K. Active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals. ACS Catal. 2019, 9, 8306–8315.

[39]

Hu, J. X.; Fan, N. B.; Chen, C.; Wu, Y. Q.; Wei, Z. H.; Xu, B.; Peng, Y.; Shen, M. R.; Fan, R. L. Facet engineering in Au nanoparticles buried in p-Si photocathodes for enhanced photoelectrochemical CO2 reduction. Appl. Catal. B Environ. 2023, 327, 122438.

[40]

Cai, X. J.; Fang, S. Y.; Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au-Pd/TiO2-what is the role of each component in the system. J. Mater. Chem. A 2021, 9, 10796–10802.

[41]

Wu, X. Y.; Tang, Z. Y.; Zhao, X. X.; Luo, X.; Pennycook, S. J.; Wang, S. L. Visible-light driven room-temperature coupling of methane to ethane by atomically dispersed Au on WO3. J. Energy Chem. 2021, 61, 195–202.

[42]

Li, Q.; Li, F. T. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions. Chem. Eng. J. 2021, 421, 129915.

[43]

Wang, X. Y.; Zhou, P.; Zhou, Q.; Zhang, Q. H.; Ning, H.; Wu, M. B.; Wu, W. T. Tandem photocatalytic production of H2O2 and propylene oxide on 5-bromoisatin modified carbon nitride. Chem. Eng. J. 2023, 476, 146488.

[44]

Nakamura, R.; Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 2004, 126, 1290–1298.

File
12274_2023_6323_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2023
Revised: 27 October 2023
Accepted: 07 November 2023
Published: 13 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0708700), the National Natural Science Foundation of China (Nos. 22322815, 22179146, 51672309, 51172285, and 51372277), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2020CXGC010402), the Fundamental Research Funds for Central Universities (No. 18CX07009A), YanKuang Group Co., Ltd. (No. YKZB2020-167), the Young Taishan Scholar Program of Shandong Province (No. tsqn20182027), Taishan Scholar Project (No. ts201712020), and the Technological Leading Scholar of 10000 Talent Project (No. W03020508).

Return