Journal Home > Volume 17 , Issue 5

The electrochromic (EC) mechanisms of inorganic materials are usually based on reversible cation insertion/extraction or metal deposition/dissolution, which are plagued by ion trapping and dendrite growth, respectively. In this paper, a novel conversion-type electrochromic mechanism is proposed, by making good use of the CuI/Cu redox couple. This CuI-based electrochromic system shows a neutral color switching from transparent and dim grey. By simply increasing the bleaching voltage, I3/I redox couple can be further activated. The generated I3 will readily react with Cu, effectively improving the conversion reversibility and thereby rejuvenating the degraded electrochromic performance. Thanks to the well-designed electrode and the self-healing ability, this conversion electrochromic system achieves rapid response times (tcoloring: 23 s, tbleaching: 6 s), decant optical modulation amplitude (26.4%), high coloration efficiency (86.15 cm2·C−1), admirable cyclic durability (without performance degradation after 480 cycles) and excellent optical memory ability (transmittance variation < 1% after 10 h open-circuit storage). The establishment of this conversion-type electrochromism may inspire the exploration of novel electrochromic materials and devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Neutral color and self-healable electrochromic system based on CuI/Cu and I3/I conversions

Show Author's information Junsen Zhong1,§Bingkun Huang1,2,§Kunjie Yang1Zuju Ma1( )Lingyu Du1Ning Luo1,3Fengjiao Tang1Chuanxin Hou1Fuyi Jiang1( )Litao Kang1( )
College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Shandong Laboratory of Advanced Materials and Green Manufacturing (Yantai), Yantai 264001, China

§ Junsen Zhong and Bingkun Huang contributed equally to this work.

Abstract

The electrochromic (EC) mechanisms of inorganic materials are usually based on reversible cation insertion/extraction or metal deposition/dissolution, which are plagued by ion trapping and dendrite growth, respectively. In this paper, a novel conversion-type electrochromic mechanism is proposed, by making good use of the CuI/Cu redox couple. This CuI-based electrochromic system shows a neutral color switching from transparent and dim grey. By simply increasing the bleaching voltage, I3/I redox couple can be further activated. The generated I3 will readily react with Cu, effectively improving the conversion reversibility and thereby rejuvenating the degraded electrochromic performance. Thanks to the well-designed electrode and the self-healing ability, this conversion electrochromic system achieves rapid response times (tcoloring: 23 s, tbleaching: 6 s), decant optical modulation amplitude (26.4%), high coloration efficiency (86.15 cm2·C−1), admirable cyclic durability (without performance degradation after 480 cycles) and excellent optical memory ability (transmittance variation < 1% after 10 h open-circuit storage). The establishment of this conversion-type electrochromism may inspire the exploration of novel electrochromic materials and devices.

Keywords: self-healing, electrochromic, conversion reaction, CuI, neutral color

References(40)

[1]

Wang, Z.; Wang, X. Y.; Cong, S.; Geng, F. X.; Zhao, Z. G. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng.: R: Rep. 2020, 140, 100524.

[2]

Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K. C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 2019, 7, 4622–4637.

[3]

Yang, B.; Ma, D. Y.; Zheng, E. M.; Wang, J. M. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Sol. Energy Mater. Sol. Cells 2019, 192, 1–7.

[4]

Wang, Y. Y.; Shen, R. P.; Wang, S.; Chen, Q. L.; Gu, C.; Zhang, W. R.; Yang, G. J.; Chen, Q. N.; Zhang, Y. M.; Zhang, S. X. A. A see-through electrochromic display via dynamic metal-ligand interactions. Chem 2021, 7, 1308–1320.

[5]

Shao, Z. W.; Huang, A. B.; Ming, C.; Bell, J.; Yu, P.; Sun, Y. Y.; Jin, L. M.; Ma, L. Y.; Luo, H. J.; Jin, P. et al. All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 2022, 5, 45–52.

[6]

Huang, S. Y.; Zhang, R. F.; Shao, P. P.; Zhang, Y. W.; Wen, R. T. Electrochromic performance fading and restoration in amorphous TiO2 thin films. Adv. Opt. Mater. 2022, 10, 2200903.

[7]

Assis, L. M. N.; Leones, R.; Kanicki, J.; Pawlicka, A.; Silva, M. M. Prussian blue for electrochromic devices. J. Electroanal. Chem. 2016, 777, 33–39.

[8]

Wang, B.; Cui, M. W.; Gao, Y. F.; Jiang, F. Y.; Du, W.; Gao, F.; Kang, L. T.; Zhi, C. Y.; Luo, H. J. A long-life battery-type electrochromic window with remarkable energy storage ability. Sol. RRL 2020, 4, 1900425.

[9]

Song, J. S.; Huang, B. K.; Xu, Y. Y. J.; Yang, K. J.; Li, Y. F.; Mu, Y. Q.; Du, L. Y.; Yun, S.; Kang, L. T. A low driving-voltage hybrid-electrolyte electrochromic window with only ferreous redox couples. Nanomaterials 2023, 13, 213.

[10]

Song, J. S.; Huang, B. K.; Liu, S. Y.; Kang, L. T.; Zhang, Z. Y.; Shang, G. Y.; Yang, Y. X.; Li, X. M.; Wang, D. Y. Facile preparation of Prussian blue electrochromic films for smart-supercapattery via an in- situ replacement reaction. Sol. Energy 2022, 232, 275–282.

[11]

Rai, V.; Tiwari, N.; Rajput, M.; Joshi, S. M.; Nguyen, A. C.; Mathews, N. Reversible electrochemical silver deposition over large areas for smart windows and information display. Electrochim. Acta 2017, 255, 63–71.

[12]

Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934.

[13]

Huang, Y.; Wang, B. S.; Chen, F. X.; Han, Y.; Zhang, W. S.; Wu, X. K.; Li, R.; Jiang, Q. Y.; Jia, X. L.; Zhang, R. F. Electrochromic materials based on ions insertion and extraction. Adv. Opt. Mater. 2022, 10, 2101783.

[14]

Islam, S. M.; Hernandez, T. S.; McGehee, M. D.; Barile, C. J. Hybrid dynamic windows using reversible metal electrodeposition and ion insertion. Nat. Energy 2019, 4, 223–229.

[15]

Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679–14721.

[16]

Wen, R. T.; Granqvist, C. G.; Niklasson, G. A. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange. Appl. Phys. Lett. 2014, 105, 163502.

[17]

Wen, R. T.; Granqvist, C. G.; Niklasson, G. A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 2015, 14, 996–1001.

[18]

Sorar, I.; Pehlivan, İ. B.; Granqvist, C. G.; Niklasson, G. A. Electrochromism of W-In oxide thin films: Implications for cycling durability. Thin Solid Films 2020, 697, 137830.

[19]

Kim, M. G.; Sim, S.; Cho, J. Novel core–shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv. Mater. 2010, 22, 5154–5158.

[20]

Zhang, S. L.; Cao, S.; Zhang, T. R.; Fisher, A.; Lee, J. Y. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 2018, 11, 2884–2892.

[21]

Wu, C.; Shao, Z. W.; Zhai, W. B.; Zhang, X. S.; Zhang, C.; Zhu, C. Y.; Yu, Y.; Liu, W. Niobium tungsten oxides for electrochromic devices with long-term stability. ACS Nano 2022, 16, 2621–2628.

[22]

Park, S.; Thuy, D. T.; Sarwar, S.; Van Tran, H.; Lee, S. I.; Park, H. S.; Song, S. H.; Han, C. H.; Hong, S. Synergistic effects of Ti-doping induced porous networks on electrochromic performance of WO3 films. J. Mater. Chem. C 2020, 8, 17245–17253.

[23]

Wang, Z.; Gong, W. B.; Wang, X. Y.; Chen, Z. G.; Chen, X. L.; Chen, J.; Sun, H. Z.; Song, G.; Cong, S.; Geng, F. X. et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl. Mater. Interfaces 2020, 12, 33917–33925.

[24]

B. K.; Song, J. S.; Zhong, J. S.; Wang, H. B.; Zheng, X. Q.; Jia, J. Y.; Yun, S.; You, D. J.; Kimura, H.; Kang, L. T. Prolonging lifespan of Prussian blue electrochromic films by an acid-free bulky-anion potassium organic electrolyte. Chem. Eng. J. 2022, 449, 137850.

[25]

Tao, X.; Liu, D. Q.; Yu, J. S.; Cheng, H. F. Reversible metal electrodeposition devices: An emerging approach to effective light modulation and thermal management. Adv. Opt. Mater. 2021, 9, 2001847.

[26]

Li, N.; Wei, P. P.; Yu, L. N.; Ji, J. Y.; Zhao, J. P.; Gao, C. B.; Li, Y.; Yin, Y. D. Dynamically switchable multicolor electrochromic films. Small 2019, 15, 1804974.

[27]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[28]

Strand, M. T.; Hernandez, T. S.; Danner, M. G.; Yeang, A. L.; Jarvey, N.; Barile, C. J.; McGehee, M. D. Polymer inhibitors enable > 900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 2021, 6, 546–554.

[29]

Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 2021, 6, 1773–1785.

[30]

Liu, Y. B.; Wang, Y. Q.; Zhou, S. M.; Lou, S. Y.; Yuan, L.; Gao, T.; Wu, X. P.; Shi, X. J.; Wang, K. Synthesis of high saturation magnetization superparamagnetic Fe3O4 hollow microspheres for swift chromium removal. ACS Appl. Mater. Interfaces 2012, 4, 4913–4920.

[31]

Barile, C. J.; Slotcavage, D. J.; Hou, J. Y.; Strand, M. T.; Hernandez, T. S.; McGehee, M. D. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 2017, 1, 133–145.

[32]

Cui, M. W.; Xiao, Y.; Kang, L. T.; Du, W.; Gao, Y. F.; Sun, X. Q.; Zhou, Y. L.; Li, X. M.; Li, H. F.; Jiang, F. Y. et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496.

[33]

Eh, A. L. S.; Chen, J. W.; Zhou, X. R.; Ciou, J. H.; Lee, P. S. Robust trioptical-state electrochromic energy storage device enabled by reversible metal electrodeposition. ACS Energy Lett. 2021, 6, 4328–4335.

[34]

Grundmann, M.; Schein, F. L.; Lorenz, M.; Böntgen, T.; Lenzner, J.; von Wenckstern, H. Cuprous iodide—A p-type transparent semiconductor: History and novel applications. Phys. Status Solidi A 2013, 210, 1671–1703.

[35]

Zhang, B. H.; Yu, X. Y.; Ge, C. Y.; Dong, X. M.; Fang, Y. P.; Li, Z. S.; Wang, H. Q. Novel 3-D superstructures made up of SnO2@C core–shell nanochains for energy storage applications. Chem. Commun. 2010, 46, 9188–9190.

[36]

Meng, J. L.; Yang, Z. H.; Chen, L. L.; Zeng, X.; Chen, H. Z.; Cui, F.; Jiang, Y. N. The investigation on the electrochemical performance of CuI as cathode material for zinc storage. Electrochim. Acta 2020, 338, 135915.

[37]

de Mello, D. A. A.; Oliveira, M. R. S.; de Oliveira, L. C. S.; de Oliveira, S. C. Solid electrolytes for electrochromic devices based on reversible metal electrodeposition. Sol. Energy Mater. Sol. Cells 2012, 103, 17–24.

[38]

Zhang, Y. X.; Wang, L. Q.; Li, Q. Y.; Hu, B.; Kang, J. M.; Meng, Y. H.; Zhao, Z. D.; Lu, H. B. Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-Iodine batteries. Nano-Micro Lett. 2022, 14, 208.

[39]

Yang, M.; Xu, J. Z.; Xu, S.; Zhu, J. J.; Chen, H. Y. Preparation of porous spherical CuI nanoparticles. Inorg. Chem. Commun. 2004, 7, 628–630.

[40]

Yang, J.; Song, Y. X.; Liu, Q. H.; Tang, A. High-capacity zinc-iodine flow batteries enabled by a polymer-polyiodide complex cathode. J. Mater. Chem. A 2021, 9, 16093–16098.

File
12274_2023_6322_MOESM1_ESM.pdf (621.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2023
Revised: 29 October 2023
Accepted: 06 November 2023
Published: 02 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements:

The authors thank the National Natural Science Foundation of China (Nos. 52371238, 22273081, and 52207249), the Natural Science Foundation of Shandong Province (No. ZR2020ME024), Taishan Young Scholar Program (No. tsqn202211114), and the Open Foundation of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province (No. HPK202103) for financial support.

Return