Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Enhancing catalytic activity through modulating the interaction between N-doped carbon and metal phosphides clusters is an effective approach. Herein, the electronic structure modulation of CoP2 supported N-modified carbon (CoP2/NC) has been designed and prepared as efficient electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Notably, CoP2/NC-1 catalyst exhibits impressive performance in alkaline media, with an ORR half-wave potential of 0.84 V, as well as OER and HER overpotentials of 290 and 129 mV (at 10 mA·cm−2), respectively. In addition, CoP2/NC-1 produces a power density as high as 172.9 mW·cm−2, and excellent reversibility of 100 h at 20 mA·cm−2 in home-made Zn-air batteries. The experimental results demonstrate that the synergistic interactions between N modified carbon substrate and CoP2 material significantly enhance the kinetics of ORR, OER, and HER. Density functional theory (DFT) calculations reveal the strong electrons redistribution of CoP2 induced by high-density N atoms at the interface, thus optimizing the key intermediates and significantly lower the energy barrier of reactions. These electronic adjustments of CoP2 greatly enhance its kinetics of ORR/OER/HER, leading to faster reactions. This study provides profound insights into the specific modification of CoP2 by N-doped carbon, enabling the construction of efficient catalysts.
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.
Qu, S. X.; Liu, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Dynamic stretching-electroplating metal-coated textile for a flexible and stretchable zinc-air battery. Carbon Energy 2022, 4, 867–877.
Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.
Liu, J. J.; Zheng, M. T.; Li, J. T.; Yuan, Y. F.; Li, C. H.; Zhang, S. Q.; Yang, L.; Bai, Z. Y.; Lu, J. Lithiation-induced defect engineering to promote oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2209753.
Zhang, J. T.; Liu, X. Z.; Ji, Y. J.; Liu, X. R.; Su, D.; Zhuang, Z. B.; Chang, Y. C.; Pao, C. W.; Shao, Q.; Hu, Z. W. et al. Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nat. Commun. 2023, 14, 1761.
Lin, X. T.; Sun, Q.; Kim, J. T.; Li, X. F.; Zhang, J. J.; Sun, X. L. Superoxide-based Na-O2 batteries: Background, current status and future prospects. Nano Energy 2023, 112, 108466.
Wang, J. M.; Liu, X. J.; Li, L. H.; Liu, R.; Liu, Y. R.; Wang, C. L.; Lv, Z. H.; Yang, W. X.; Feng, X.; Wang, B. Heterogeneous assembling 3D free-standing Co@carbon membrane enabling efficient fluid and flexible zinc-air batteries. Nano Res. 2023, 16, 9327–9334.
Li, M.; Wu, Z. Z.; Zheng, M. T.; Chen, H.; Gould, T.; Zhang, S. Q. First-principles exploration of 2D benzenehexathiolate coordination nanosheets for broadband electrochromic devices. Adv. Funct. Mater. 2022, 32, 2202763.
Zhao, L.; Zhu, J. B.; Zheng, Y.; Xiao, M. L.; Gao, R.; Zhang, Z.; Wen, G. B.; Dou, H. Z.; Deng, Y. P.; Yu, A. P. et al. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102665.
Xu, B. Y.; Liu, T. Y.; Liang, X. C.; Dou, W. J.; Geng, H. B.; Yu, Z. Y.; Li, Y. F.; Zhang, Y.; Shao, Q.; Fan, J. M. et al. Pd-Sb rhombohedra with an unconventional rhombohedral phase as a trifunctional electrocatalyst. Adv. Mater. 2022, 34, 2206528.
He, X. D.; Han, X.; Zhou, X. Y.; Chen, J. D.; Wang, J.; Chen, Y.; Yu, L. H.; Zhang, N.; Li, J.; Wang, S. et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA·cm−2. Appl. Catal. B: Environ. 2023, 331, 122683.
Jin, M. Y.; Teng, M. Y.; Wang, S.; Yang, K. Q.; Wang, J.; Jin, H. L. Interface engineering of crystalline/amorphous Pt/TeO x nanocapsules for efficient alkaline hydrogen evolution. Int. J. Hydrogen Energy 2023, 48, 16593–16600.
Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N Co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.
Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.
Jiang, X.; Xie, Q. F.; Lu, G. X.; Wang, Y.; Liu, T. F.; Liu, Y. J.; Tao, X. Y.; Nai, J. W. Synthesis of NiSe2/Fe3O4 nanotubes with heteroepitaxy configuration as a high-efficient oxygen evolution electrocatalyst. Small Methods 2022, 6, 2200377.
Zhou, Y. N.; Hu, W. H.; Zhen, Y. N.; Dong, B.; Dong, Y. W.; Fan, R. Y.; Liu, B.; Liu, D. P.; Chai, Y. M. Metallic MoO x layer promoting high-valence Mo doping into CoP nanowires with ultrahigh activity for hydrogen evolution at 2000 mA·cm−2. Appl. Catal. B: Environ. 2022, 309, 121230.
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated n-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.
Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.
Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.
Liu, H.; Liu, Z. H.; Wang, Y.; Zhang, J. Q.; Yang, Z. X.; Hu, H.; Zhao, Q. S.; Ning, H.; Zhi, L. J.; Wu, M. B. Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 2021, 182, 327–334.
Wu, J. C.; Wang, Z. F.; Guan, T. T.; Zhang, G. L.; Zhang, J.; Han, J.; Guan, S. Q.; Wang, N.; Wang, J. L.; Li, K. X. Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting. Carbon Energy 2023, 5, e268.
Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603.
Jin, J. C.; Peng, Y. H.; Xu, Y. T.; Han, K.; Zhang, A. R.; Yang, X. B.; Xia, Z. G. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725.
Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites. Angew. Chem., Int. Ed. 2022, 61, e202116290.
Zaman, S.; Douka, A. I.; Noureen, L.; Tian, X. L.; Ajmal, Z.; Wang, H. J. Oxygen reduction performance measurements: Discrepancies against benchmarks. Battery Energy 2023, 2, 20220060.
Niu, S. W.; Fang, Y. Y.; Rao, D. W.; Liang, G. J.; Li, S. Y.; Cai, J. Y.; Liu, B.; Li, J. M.; Wang, G. M. Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 2022, 18, 2106870.
Li, H.; Wen, P.; Itanze, D. S.; Kim, M. W.; Adhikari, S.; Lu, C.; Jiang, L.; Qiu, Y. J.; Geyer, S. M. Retracted: Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 2019, 31, 1900813.
He, X. D.; Zhang, Y. J.; Wang, J.; Li, J.; Yu, L. H.; Zhou, F.; Li, J.; Shen, X. J.; Wang, X.; Wang, S. et al. Biomass-derived Fe2N@NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn-air battery. ACS Sustain. Chem. Eng. 2022, 10, 9105–9112.
Németh, P.; Lancaster, H. J.; Salzmann, C. G.; McColl, K.; Fogarassy, Z.; Garvie, L. A. J.; Illés, L.; Pecz, B.; Murri, M.; Corà, F. et al. Shock-formed carbon materials with intergrown sp3- and sp2-bonded nanostructured units. Proc. Natl. Acad. Sci. USA 2022, 119, e2203672119.
Moura, T. A.; Neves, W. Q.; Alencar, R. S.; Kim, Y. A.; Endo, M.; Vasconcelos, T. L.; Costa, D. G.; Candiotto, G.; Capaz, R. B.; Araujo, P. T. et al. Resonance Raman spectroscopy characterization of linear carbon chains encapsulated by multi-walled carbon nanotubes. Carbon 2023, 212, 118123.
Li, X. W.; Yang, S.; Liu, M. H.; Liu, S. J.; Miao, Q. Y.; Duan, Z. L.; Qiao, P. Z.; Lin, J. Y.; Sun, F. F.; Xu, Q. et al. Immobilization of platinum nanoparticles on covalent organic framework-derived carbon for oxygen reduction catalysis. Small Struct. 2023, 4, 2200320.
Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 2015, 5, 2740–2753.
Quílez-Bermejo, J.; García-Dalí, S.; Daouli, A.; Zitolo, A.; Canevesi, R. L. S.; Emo, M.; Izquierdo, M. T.; Badawi, M.; Celzard, A.; Fierro, V. Advanced design of metal nanoclusters and single atoms embedded in C1N1-derived carbon materials for ORR, HER, and OER. Adv. Funct. Mater. 2023, 33, 2300405.
Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D. J.; Balamurugan, J.; Noh, H. S.; Kwon, D.; Kim, Y. H.; Lee, H. MOF-derived CoP-nitrogen-doped Carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries. Chem. Eng. J. 2022, 428, 131115.