Journal Home > Volume 17 , Issue 5

Constructing interfaces in heterostructures is effective for modulating the electronic properties of electrocatalysts. The hollow CoMoO4–Co3O4 heterostructure (HCMCH) was prepared as a bifunctional electrocatalyst for Li-O2 battery. The different components in CoMoO4–Co3O4 heterostructure presented the efficient coupling and enhanced the electrocatalytic activity for aprotic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), in which it improved the obviously reduced overpotential of 300 mV (compared with the pure Ketjen black (KB) electrode), enhanced reversibility of 80% capacity retention after 6 full cycles and the superior cyclability of more than 200 cycles with an optimized strategy. The battery performance of the HCMCH was not only associated with the unique hollow structure and rich active sites but also with coupling interface constructions synergetic effects attaching to the improving conductivity and optimized the discharge conversion. These results suggested that this HCMCH electrocatalyst was a promising candidate for the Li-O2 battery and it gave a novel insight for high performance electrocatalyst designing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coupling interface constructions of hollow Co-Mo mixed multiple oxidation states heterostructure for high-performance aprotic Li-O2 battery

Show Author's information Xingzi Zheng1,§Mengwei Yuan2,§Jingshen Xu1Zihan Li1Caiyun Nan1Genban Sun1,2( )
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China

§ Xingzi Zheng and Mengwei Yuan contributed equally to this work.

Abstract

Constructing interfaces in heterostructures is effective for modulating the electronic properties of electrocatalysts. The hollow CoMoO4–Co3O4 heterostructure (HCMCH) was prepared as a bifunctional electrocatalyst for Li-O2 battery. The different components in CoMoO4–Co3O4 heterostructure presented the efficient coupling and enhanced the electrocatalytic activity for aprotic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), in which it improved the obviously reduced overpotential of 300 mV (compared with the pure Ketjen black (KB) electrode), enhanced reversibility of 80% capacity retention after 6 full cycles and the superior cyclability of more than 200 cycles with an optimized strategy. The battery performance of the HCMCH was not only associated with the unique hollow structure and rich active sites but also with coupling interface constructions synergetic effects attaching to the improving conductivity and optimized the discharge conversion. These results suggested that this HCMCH electrocatalyst was a promising candidate for the Li-O2 battery and it gave a novel insight for high performance electrocatalyst designing.

Keywords: heterostructure, electrocatalyst, Li-oxygen battery, coupling interface

References(53)

[1]

Liu, B.; Sun, Y. L.; Liu, L.; Xu, S.; Yan, X. B. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries. Adv. Funct. Mater. 2018, 28, 1704973.

[2]

Liang, H. J.; Gu, Z. Y.; Zhao, X. X.; Guo, J. Z.; Yang, J. L.; Li, W. H.; Li, B.; Liu, Z. M.; Sun, Z. H.; Zhang, J. P. et al. Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 2022, 67, 1581–1588.

[3]

Wang, X. T.; Yang, Y.; Guo, J. Z.; Gu, Z. Y.; Ang, E. H.; Sun, Z. H.; Li, W. H.; Liang, H. J.; Wu, X. L. An advanced cathode composite for co-utilization of cations and anions in lithium batteries. J. Mater. Sci. Technol. 2022, 102, 72–79

[4]

Kang, J. H.; Lee, J.; Jung, J. W.; Park, J.; Jang, T.; Kim, H. S.; Nam, J. S.; Lim, H.; Yoon, K. R.; Ryu, W. H. et al. Lithium-air batteries: Air-breathing challenges and perspective. ACS Nano 2020, 14, 14549–14578.

[5]

Van Der Ven, A.; See, K. A.; Pilon, L. Hysteresis in electrochemical systems. Battery Energy 2022, 1, 20210017.

[6]

Kwak, W. J.; Rosy, N.; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[7]

Gu, Z. Y.; Heng, Y. L.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Sun, Z. H.; Zheng, S. H.; Liang, H. J.; Li, B. et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Res. 2023, 16, 439–448

[8]

Zheng, X. Z.; Yuan, M. W.; Zhao, Y. L.; Li, Z. H.; Shi, K. F.; Li, H. F.; Sun, G. B. Status and prospects of MXene-based lithium-oxygen batteries: Theoretical prediction and experimental modulation. Adv. Energy Mater. 2023, 13, 2204019.

[9]

Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

[10]

Zhu, C. L.; Du, L.; Luo, J. M.; Tang, H. B.; Cui, Z. M.; Song, H. Y.; Liao, S. J. A renewable wood-derived cathode for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 14291–14298.

[11]

Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H. et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

[12]

Choi, R.; Jung, J.; Kim, G.; Song, K.; Kim, Y. I.; Jung, S. C.; Han, Y. K.; Song, H.; Kang, Y. M. Ultra-low overpotential and high rate capability in Li-O2 batteries through surface atom arrangement of PdCu nanocatalysts. Energy Environ. Sci. 2014, 7, 1362–1368.

[13]

Gao, R.; Yang, Z. Z.; Zheng, L. R.; Gu, L.; Liu, L.; Lee, Y.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 for Li-O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal. 2018, 8, 1955–1963.

[14]

Li, X. Y.; Wen, C. Y.; Yuan, M. W.; Sun, Z. M.; Wei, Y. Y.; Ma, L. Y.; Li, H. F.; Sun, G. B. Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J. Alloys Compd. 2020, 824, 153803.

[15]

Zheng, X. Z.; Yuan, M. W.; Huang, X. Q.; Li, H. F.; Sun, G. B. In situ decoration of CoP/Ti3C2T x composite as efficient electrocatalyst for Li-oxygen battery. Chin. Chem. Lett. 2023, 34, 107152.

[16]

Zhang, S. T.; Qiu, J. C.; Zhang, Y.; Lin, Y. R.; Liu, R.; Yuan, M. W.; Sun, G. B.; Nan, C. Y. Crystal phase conversion on cobalt oxide: Stable adsorption toward LiO2 for film-like discharge products generation in Li-O2 battery. Small 2022, 18, 2201150.

[17]

Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

[18]

Zheng, X. Z.; Yuan, M. W.; Guo, D. H.; Wen, C. Y.; Li, X. Y.; Huang, X. Q.; Li, H. F.; Sun, G. B. Theoretical design and structural modulation of a surface-functionalized Ti3C2T x MXene-Based heterojunction electrocatalyst for a Li-oxygen battery. ACS Nano 2022, 16, 4487–4499.

[19]

Han, X.; Zhao, L. L.; Wang, J.; Liang, Y. J.; Zhang, J. T. Delocalized electronic engineering of Ni5P4 nanoroses for durable Li-O2 batteries. Adv. Mater. 2023, 35, 2301897.

[20]

Ma, Y. R.; Qu, H. Q.; Chi, Z. Z.; Liu, X. Q.; Yu, Y. Q.; Guo, Z. Y.; Wang, L. The highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification as a promising cathode catalyst for long-life Li-O2 batteries. Nano Res. 2022, 15, 3204–3212.

[21]

Hua, C.; Qian, Z. Y.; Chen, M.; Du, C. Y.; Zuo, P. J.; Cheng, X. Q.; Ma, Y. L.; Yin, G. P. 3D hierarchical Co/CoO/C nanocomposites with mesoporous microsheets grown on nickel foam as cathodes for Li-O2 batteries. J. Alloys Compd. 2018, 749, 378–384

[22]

Yuan, M. W.; Yang, Y.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Ma, S. L. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries. Appl. Surf. Sci. 2018, 444, 312–319.

[23]

Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater. 2016, 28, 7494–7500.

[24]

Xu, J. J.; Chang, Z. W.; Yin, Y. B.; Zhang, X. B. Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium-oxygen batteries. ACS Cent. Sci. 2017, 3, 598–604.

[25]

Sun, Z. M.; Wang, D.; Lin, L.; Liu, Y. H.; Yuan, M. W.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 2022, 15, 1171–1177.

[26]

Yi, G. Y.; Li, G. Y.; Jiang, S. H.; Zhang, G. L.; Guo, L.; Zhang, X. Q.; Zhao, Z. K.; Zou, Z. P.; Ma, H. L.; Fu, X. J. et al. Efficient Fe3C-CF cathode catalyst based on the formation/decomposition of Li2− x O2 for Li-O2 batteries. Molecules 2023, 28, 5597.

[27]

Zhang, Z.; Bao, J.; He, C.; Chen, Y. N.; Wei, J. P.; Zhou, Z. Hierarchical carbon-nitrogen architectures with both mesopores and macrochannels as excellent cathodes for rechargeable Li-O2 batteries. Adv. Funct. Mater. 2014, 24, 6826–6833.

[28]

Yang, X. Y.; Xu, J. J.; Chang, Z. W.; Bao, D.; Yin, Y. B.; Liu, T.; Yan, J. M.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries. Adv. Energy Mater. 2018, 8, 1702242.

[29]

Liu, Q. C.; Jiang, Y. S.; Xu, J. J.; Xu, D.; Chang, Z. W.; Yin, Y. B.; Liu, W. Q.; Zhang, X. B. Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano Res. 2014, 8, 576–583.

[30]

Wang, B. X.; Liu, C. X.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 2022, 15, 4132–4136.

[31]

Zhang, Y.; Hu, M. Z.; Yuan, M. W.; Sun, G. B.; Li, Y. F.; Zhou, K. B.; Chen, C.; Nan, C. Y.; Li, Y. D. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2019, 12, 299–302.

[32]

Han, X. P.; Cheng, F. Y.; Chen, C. C.; Hu, Y. X.; Chen, J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2015, 8, 156–164.

[33]

Hu, X. F.; Cheng, F. Y.; Han, X. P.; Zhang, T. R.; Chen, J. Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small 2015, 11, 809–813.

[34]

Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

[35]

Sun, Z. H.; Cao, X. C.; Tian, M.; Zeng, K.; Jiang, Y. X.; Rummeli, M. H.; Strasser, P.; Yang, R. Z. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2100110.

[36]

Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

[37]

Wang, F.; Wen, Z. Y.; Shen, C.; Wu, X. W.; Liu, J. J. Synthesis of α-MnO2 nanowires modified by Co3O4 nanoparticles as a high-performance catalyst for rechargeable Li-O2 batteries. Phys. Chem. Chem. Phys. 2016, 18, 926–931.

[38]

Zhao, W.; Li, X. M.; Yin, R.; Qian, L.; Huang, X. S.; Liu, H.; Zhang, J. X.; Wang, J.; Ding, T.; Guo, Z. H. Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li-O2 batteries. Nanoscale 2019, 11, 50–59.

[39]

Wang, G.; Zhang, S. P.; Qian, R.; Wen, Z. Y. Atomic-thick TiO2(B) nanosheets decorated with ultrafine Co3O4 nanocrystals as a highly efficient catalyst for lithium-oxygen battery. ACS Appl. Mater. Interfaces 2018, 10, 41398–41406.

[40]

Cao, X. C.; Sun, Z. H.; Zheng, X. J.; Jin, C.; Tian, J. H.; Li, X. W.; Yang, R. Z. MnCo2O4/MoO2 nanosheets grown on Ni foam as carbon- and binder-free cathode for lithium-oxygen batteries. ChemSusChem 2018, 11, 574–579.

[41]

Tang, C.; Mao, Y. J.; Xie, J.; Chen, Z.; Tu, J.; Cao, G. S.; Zhao, X. B. NiCo2O4/MnO2 core/shell arrays as a binder-free catalytic cathode for high-performance lithium-oxygen cells. Inorg. Chem. Front. 2018, 5, 1707–1713.

[42]

Sun, Z. M.; Yuan, M. W.; Lin, L.; Yang, H.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Yang, X. J. Perovskite La0.5Sr0.5CoO3− δ grown on Ti3C2T x MXene nanosheets as bifunctional efficient hybrid catalysts for Li-oxygen batteries. ACS Appl. Energy Mater. 2019, 2, 4144–4150.

[43]

Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

[44]

Wang, L. J.; Cui, X. H.; Gong, L. L.; Lyu, Z.; Zhou, Y.; Dong, W. H.; Liu, J.; Lai, M.; Huo, F. W.; Huang, W. et al. Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li-O2 battery and superior anode for a Li-ion battery. Nanoscale 2017, 9, 3898–3904.

[45]
Shi, M. X.; Wu, M.; Xiao, S. S.; Liu, S. P.; Yao, R. Q.; Li, Y. Q.; Wang, Y. H.; Li, Y. G.; Tan, H. Q. Amorphous NiMo3S13/nickel foam integrated anode for lithium-ion batteries. Tungsten, in press, DOI: 10.1007/s42864-022-00201-1.
[46]

Wang, J. K.; Gao, R.; Zhou, D.; Chen, Z. J.; Wu, Z. H.; Schumacher, G.; Hu, Z. B.; Liu, X. F. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 2017, 7, 6533–6541.

[47]

Yuan, M. W.; Sun, Z. M.; Wu, Z. L.; Wang, D.; Yang, H.; Nan, C. Y.; Li, H. F.; Zhang, W. K.; Sun, G. B. Tuning the oxygen vacancy of mixed multiple oxidation states nanowires for improving Li-air battery performance. J. Colloid Interface Sci. 2022, 608, 1384–1392.

[48]

Yang, Y.; Wang, S. T.; Jiang, C. H.; Lu, Q. C.; Tang, Z. L.; Wang, X. Controlled synthesis of hollow Co-Mo mixed oxide nanostructures and their electrocatalytic and lithium storage properties. Chem. Mater. 2016, 28, 2417–2423.

[49]

Yuan, M. W.; Yao, H. Q.; Xie, L. X.; Liu, X. W.; Wang, H.; Islam, S. M.; Shi, K. R.; Yu, Z. H.; Sun, G. B.; Li, H. F. et al. Polypyrrole-Mo3S13: An efficient sorbent for the capture of Hg2+ and highly selective extraction of Ag+ over Cu2+. J. Am. Chem. Soc. 2020, 142, 1574–1583.

[50]

Yang, L. X.; Xie, L. X.; Chu, M. L.; Wang, H.; Yuan, M. W.; Yu, Z. H.; Wang, C. N.; Yao, H. Q.; Islam, S. M.; Shi, K. R. et al. Mo3S132− intercalated layered double hydroxide: Highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons. Angew. Chem., Int. Ed. 2022, 61, e202112511.

[51]

Song, Y. J.; Yuan, M. W.; Su, W. L.; Guo, D. H.; Chen, X. B.; Sun, G. B.; Zhang, W. K. Ultrathin two-dimensional bimetal-organic framework nanosheets as high-performance electrocatalysts for benzyl alcohol oxidation. Inorg. Chem. 2022, 61, 7308–7317.

[52]

Bai, W. L.; Zhang, Z.; Wang, K. X.; Chen, J. S. Tuning discrete growth of ultrathin nonstoichiometric Li2− x O2 discs to achieve high cycling performance Li-O2 battery. Battery Energy 2022, 1, 20220019.

[53]

Yuan, M. W.; Sun, Z. M.; Yang, H.; Wang, D.; Liu, Q. M.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Chen, S. W. Self-catalyzed rechargeable lithium-air battery by in situ metal ion doping of discharge products: A combined theoretical and experimental study. Energy Environ. Mater. 2023, 6, e12258.

File
12274_2023_6320_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2023
Revised: 04 November 2023
Accepted: 05 November 2023
Published: 12 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22271018 and 12304037), Talent introduction and scientific research funds of Beijing Normal University (No. 310432107), and Interdisciplinary Research Foundation for Doctoral Candidates of Beijing Normal University (No. BNUXKJC2216).

Return