Journal Home > Volume 17 , Issue 5

The design of diatomic catalysts with uniformly dispersed metal atoms is expected to improve catalytic performance, which is conducive to the intensive comprehending of the synergistic mechanism between dual-metal sites for the oxygen evolution reaction (OER) at the atomic level. Herein, we design a strategy to immobilize bimetallic Fe-Co atoms onto nitrogen-doped graphene to obtain a diatomic catalyst (DA-FC-NG) with FeN3-CoN3 configuration. The DA-FC-NG shows excellent OER activity with a low overpotential (η10 = 268 mV), which is superior to commercial iridium dioxide catalysts. Theoretical calculations uncover that the excellent activity of DA-FC-NG is due to the interaction between Fe and Co diatoms, which causes charge rearrangement and induces the adsorption of intermediates on the Fe–O–Co bridge structure, thus improving the catalytic OER performance. This work is of great significance for the design of highly active diatomic catalysts to replace noble metal catalysts for energy-related applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Diatomic Fe-Co catalysts synergistically catalyze oxygen evolution reaction

Show Author's information Tianmi Tang1Jingyi Han1Zhenlu Wang1Xiaodi Niu2( )Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
College of Food Science and Engineering, Jilin University, Changchun 130062, China

Abstract

The design of diatomic catalysts with uniformly dispersed metal atoms is expected to improve catalytic performance, which is conducive to the intensive comprehending of the synergistic mechanism between dual-metal sites for the oxygen evolution reaction (OER) at the atomic level. Herein, we design a strategy to immobilize bimetallic Fe-Co atoms onto nitrogen-doped graphene to obtain a diatomic catalyst (DA-FC-NG) with FeN3-CoN3 configuration. The DA-FC-NG shows excellent OER activity with a low overpotential (η10 = 268 mV), which is superior to commercial iridium dioxide catalysts. Theoretical calculations uncover that the excellent activity of DA-FC-NG is due to the interaction between Fe and Co diatoms, which causes charge rearrangement and induces the adsorption of intermediates on the Fe–O–Co bridge structure, thus improving the catalytic OER performance. This work is of great significance for the design of highly active diatomic catalysts to replace noble metal catalysts for energy-related applications.

Keywords: theoretical calculation, oxygen evolution reaction, diatomic catalyst, FeN3-CoN3, X-ray absorption spectroscopy (XAS) spectrum

References(53)

[1]

Lim, J.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater. 2020, 32, 517–524

[2]

Olowoyo, J. O.; Kriek, R. J. Recent progress on bimetallic-based spinels as electrocatalysts for the oxygen evolution reaction. Small 2022, 18, 2203125.

[3]

Bai, X.; Duan, Z. Y.; Nan, B.; Wang, L. M.; Tang, T. M.; Guan, J. Q. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chin. J. Catal. 2022, 43, 2240–2248.

[4]

Han, J. Y.; Guan, J. Q. A macro library for monatomic catalysts. Chin. J. Catal. 2023, 44, 1–3.

[5]

Zhang, T.; Sun, J. R.; Guan, J. Q. Self-supported transition metal chalcogenides for oxygen evolution. Nano Res. 2023, 16, 8684–8711.

[6]

Huang, Y.; Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Trimetallic spinel NiCo2− x Fe x O4 nanoboxes for highly efficient electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2021, 60, 11841–11846.

[7]

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

[8]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[9]

Lyu, F. L.; Wang, Q. F.; Choi, S. M.; Yin, Y. D. Noble-metal-free electrocatalysts for oxygen evolution. Small 2019, 15, 1804201.

[10]

Bai, X.; Wang, Y.; Han, J. Y.; Niu, X. D.; Guan, J. Q. Engineering the electronic structure of isolated manganese sites to improve the oxygen reduction, Zn-air battery and fuel cell performances. Appl. Catal. B: Environ. 2023, 337, 122966.

[11]

Li, J.; Stephanopoulos, M. F.; Xia, Y. N. Introduction: Heterogeneous single-atom catalysis. Chem. Rev. 2020, 120, 11699–11702.

[12]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[13]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[14]

Tang, T. M.; Duan, Z. Y.; Baimanov, D.; Bai, X.; Liu, X. Y.; Wang, L. M.; Wang, Z. L.; Guan, J. Q. Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Res. 2023, 16, 2218–2223.

[15]

Han, W. K.; Wei, J. X.; Xiao, K.; Ouyang, T.; Peng, X. W.; Zhao, S. L.; Liu, Z. Q. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew. Chem., Int. Ed. 2022, 61, e202206050.

[16]

Bai, X.; Han, J. Y.; Niu, X. D.; Guan, J. Q. The d-orbital regulation of isolated manganese sites for enhanced oxygen evolution. Nano Res. 2023, 16, 10796–10802.

[17]

Du, C. F.; Hu, E. H.; Yu, H.; Yan, Q. Y. Strategies for local electronic structure engineering of two-dimensional electrocatalysts. Chin. J. Catal. 2023, 48, 1–14.

[18]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord. Chem. Rev. 2023, 492, 215288.

[19]

Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

[20]

Han, X. P.; Ling, X. F.; Yu, D. S.; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

[21]

Pan, F. H. K.; Jin, T.; Yang, W. W.; Li, H.; Cao, Y. Q.; Hu, J.; Zhou, X. G.; Liu, H. L.; Duan, X. Z. Theory-guided design of atomic Fe-Ni dual sites in N, P-co-doped C for boosting oxygen evolution reaction. Chem Catal. 2021, 1, 734–745.

[22]

He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-Air batteries. ACS Catal. 2022, 12, 1216–1227.

[23]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[24]

Xiao, K.; Lin, R. T.; Wei, J. X.; Li, N.; Li, H.; Ma, T. Y.; Liu, Z. Q. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022, 15, 4980–4985.

[25]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[26]

Wang, K.; Lu, Z. J.; Lei, J.; Liu, Z. Y.; Li, Y. Z.; Cao, Y. L. Modulation of ligand fields in a single-atom site by the molten salt strategy for enhanced oxygen bifunctional activity for zinc-air batteries. ACS Nano 2022, 16, 11944–11956.

[27]

Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

[28]

Li, J. J.; Jiang, Y. F.; Wang, Q.; Xu, C. Q.; Wu, D. J.; Banis, M. N.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z. et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat. Commun. 2021, 12, 6806.

[29]

Lakshmanan, K.; Huang, W. H.; Chala, S. A.; Taklu, B. W.; Moges, E. A.; Lee, J. F.; Huang, P. Y.; Lee, Y. C.; Tsai, M. C.; Su, W. N. et al. Highly active oxygen coordinated configuration of Fe single-atom catalyst toward electrochemical reduction of CO2 into multi-carbon products. Adv. Funct. Mater. 2022, 32, 2109310.

[30]

Wang, J. L.; Huang, Y. C.; Wang, Y. Q.; Deng, H.; Shi, Y. C.; Wei, D. X.; Li, M. T.; Dong, C. L.; Jin, H.; Mao, S. S. et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS Catal. 2023, 13, 2374–2385.

[31]

Sun, X.; Qiu, Y.; Jiang, B.; Chen, Z. Y.; Zhao, C. H.; Zhou, H.; Yang, L.; Fan, L. S.; Zhang, Y.; Zhang, N. Q. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 2023, 14, 291.

[32]

Liu, M. S.; Lv, X. H.; Wang, L. J.; Chen, K. M.; Li, Y. X.; Sun, T.; Zhang, J. M.; Zhang, L.; Sun, S. H. Kinetically favorable edge-type iron-cobalt atomic pair sites synthesized via a silica xerogel approach for efficient bifunctional oxygen electrocatalysis. J. Mater. Chem. A 2023, 11, 708–716.

[33]

Li, J. K.; Wang, F. F.; Zhang, Y.; Wang, R.; Zhao, S. N.; Zang, S. Q. Engineering the electronic structures of hetero-diatomic iron-manganese sites by d-d orbital hybridization for boosting oxygen reduction. Appl. Catal. B: Environ. 2023, 338, 123090.

[34]

Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.

[35]

Huang, S. Q.; Qiao, Z. L.; Sun, P. P.; Qiao, K. W.; Pei, K.; Yang, L.; Xu, H. X.; Wang, S. T.; Huang, Y.; Yan, Y. et al. The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton-/anion-exchange membrane fuel cells. Appl. Catal. B: Environ. 2022, 317, 121770.

[36]

Wang, Z. L.; Li, C. Y.; Liu, Y. K.; Wu, Y.; Zhang, S.; Deng, C. Atomically dispersed Fe-Ni dual sites in heteroatom doped carbon tyres for efficient oxygen electrocatalysis in rechargeable Zn-Air battery. J. Energy Chem. 2023, 83, 264–274.

[37]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[38]

Ding, S. C.; Barr, J. A.; Shi, Q. R.; Zeng, Y. C.; Tieu, P.; Lyu, Z. Y.; Fang, L. Z.; Li, T.; Pan, X. Q.; Beckman, S. P. et al. Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS Nano 2022, 16, 15165–15174.

[39]

Swierk, J. R.; Klaus, S.; Trotochaud, L.; Bell, A. T.; Tilley, T. D. Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (oxy)hydroxide catalysts. J. Phys. Chem. C 2015, 119, 19022–19029.

[40]

Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; Roy, S.; Wang, X.; Wang, X. Y.; Samanta, S.; Miller, K. A.; Molina, M.; Trivedi, D. et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 8052–8063.

[41]

Chen, D. T.; Zhang, L. H.; Du, J.; Wang, H. H.; Guo, J. Y.; Zhan, J. Y.; Li, F.; Yu, F. S. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 24022–24027.

[42]

Cheng, Y.; He, S.; Lu, S. F.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q. F. et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 2019, 6, 1802066.

[43]

Li, S. M.; Zhao, S. Q.; Lu, X. Y.; Ceccato, M.; Hu, X. M.; Roldan, A.; Catalano, J.; Liu, M.; Skrydstrup, T.; Daasbjerg, K. Low-valence Zn δ + (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 22826–22832.

[44]

Tang, T. M.; Wang, Y.; Han, J. Y.; Zhang, Q. Q.; Bai, X.; Niu, X. D.; Wang, Z. L.; Guan, J. Q. Dual-atom Co-Fe catalysts for oxygen reduction reaction. Chin. J. Catal. 2023, 46, 48–55.

[45]

Yin, C.; Yang, F. L.; Wang, S. L.; Feng, L. G. Heterostructured NiSe2/MoSe2 electronic modulation for efficient electrocatalysis in urea assisted water splitting reaction. Chin. J. Catal. 2023, 51, 225–236.

[46]

Yin, Z. Z.; He, R. Z.; Zhang, Y. C.; Feng, L. G.; Wu, X.; Wågberg, T.; Hu, G. Z. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585–592.

[47]

Li, M.; Feng, L. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019–2201024.

[48]

Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

[49]

Zhao, X. M.; Liu, X.; Huang, B. Y.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593.

[50]

Tamtaji, M.; Peng, Q. M.; Liu, T. C.; Zhao, X.; Xu, Z. H.; Galligan, P. R.; Hossain, D.; Liu, Z. J.; Wong, H.; Liu, H. W. et al. Non-bonding interaction of dual atom catalysts for enhanced oxygen reduction reaction. Nano Energy 2023, 108, 108218.

[51]

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

[52]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[53]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

File
12274_2023_6318_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2023
Revised: 31 October 2023
Accepted: 05 November 2023
Published: 02 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), the Natural Science Foundation of Jilin Province (No. 20220101051JC), the Education Department of Jilin Province (No. JJKH20220968CY), and the Graduate Innovation Fund of Jilin University (No. 2023CX036).

Return