Journal Home > Volume 17 , Issue 5

The rational design of effective bifunctional electrocatalysts is of paramount importance for overall water-splitting technology in sustainable energy conversion. Herein, bimetallic oxide catalysts (RuO2-Co3O4) derived from Ru combined MOF-derivatives (MOF = metal-organic framework) were demonstrated effective for overall water splitting in an alkaline solution, owing to the combined merits such as the two-dimensional interconnected network structure, the synergetic coupling effects and increased chemical stability. The as-prepared RuO2-Co3O4 only requires an overpotential of 260 mV for oxygen evolution and 75 mV for hydrogen evolution at 10 mA/cm2 in 1 M KOH solution; a low cell voltage of 1.54 V was required to reach the kinetic current density of 10 mA/cm2 for the water electrolysis when supporting on glass carbon electrode, and very good stability for 40 h was observed. Experimental and theoretical results demonstrated the electronic structure optimization of bimetallic RuO2-Co3O4 compared to the individual metal oxide, which promoted interface charges redistribution and the d-band center downshift, resulting in increased activity and stability for water-splitting reactions. This work provides a feasible approach for developing bimetallic oxides for application in energy-relevant electrocatalysis reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An effective bimetallic oxide catalyst of RuO2-Co3O4 for alkaline overall water splitting

Show Author's information Fangfang Ren1Jiayu Xu1,2Ligang Feng2( )
College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

Abstract

The rational design of effective bifunctional electrocatalysts is of paramount importance for overall water-splitting technology in sustainable energy conversion. Herein, bimetallic oxide catalysts (RuO2-Co3O4) derived from Ru combined MOF-derivatives (MOF = metal-organic framework) were demonstrated effective for overall water splitting in an alkaline solution, owing to the combined merits such as the two-dimensional interconnected network structure, the synergetic coupling effects and increased chemical stability. The as-prepared RuO2-Co3O4 only requires an overpotential of 260 mV for oxygen evolution and 75 mV for hydrogen evolution at 10 mA/cm2 in 1 M KOH solution; a low cell voltage of 1.54 V was required to reach the kinetic current density of 10 mA/cm2 for the water electrolysis when supporting on glass carbon electrode, and very good stability for 40 h was observed. Experimental and theoretical results demonstrated the electronic structure optimization of bimetallic RuO2-Co3O4 compared to the individual metal oxide, which promoted interface charges redistribution and the d-band center downshift, resulting in increased activity and stability for water-splitting reactions. This work provides a feasible approach for developing bimetallic oxides for application in energy-relevant electrocatalysis reactions.

Keywords: metal-organic frameworks, cobalt oxide, heterostructures, overall water splitting, ruthenium dioxide

References(65)

[1]

Lu, L. L.; Li, Q.; Du, J.; Shi, W.; Cheng, P. Bimetallic cobalt-nickel coordination polymer electrocatalysts for enhancing oxygen evolution reaction. Chin. Chem. Lett. 2022, 33, 2928–2932.

[2]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[3]

Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019–2201024.

[4]

Liu, C. R.; Yang, F. L.; Schechter, A.; Feng, L. G. Recent progress of Ni-based catalysts for methanol electrooxidation reaction in alkaline media. Adv. Sens. Energy Mater. 2023, 2, 100055.

[5]

Wang, Q. W.; He, R. Z.; Yang, F. L.; Tian, X. L.; Sui, H. M.; Feng, L. G. An overview of heteroatom doped cobalt phosphide for efficient electrochemical water splitting. Chem. Eng. J. 2023, 456, 141056.

[6]

Zhou, Y.; Wang, Q. W.; Tian, X. L.; Feng, L. G. Efficient bifunctional catalysts of CoSe/N-doped carbon nanospheres supported Pt nanoparticles for methanol electrolysis of hydrogen generation. Nano Res. 2022, 15, 8936–8945.

[7]

Abdelghafar, F.; Xu, X. M.; Jiang, S. P.; Shao, Z. P. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep.: Energy 2022, 2, 100144.

[8]

Li, J. X.; Wang, S. L.; Chang, J. F.; Feng, L. G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.

[9]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020, 78, 105270.

[10]

Fu, X. W.; Shi, R. J.; Jiao, S. L.; Li, M. M.; Li, Q. Y. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. J. Energy Chem. 2022, 70, 129–153.

[11]

Li, M.; Yang, F. L.; Chang, J. F.; Schechter, A.; Feng, L. G. MoP-NC nanosphere supported Pt nanoparticles for efficient methanol electrolysis. Acta Phys. Chim. Sin. 2023, 39, 2301005.

[12]

Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105–1109.

[13]

Zhou, Y.; Wang, Q. W.; Tian, X. L.; Chang, J. F.; Feng, L. G. Electron-enriched Pt induced by CoSe2 promoted bifunctional catalytic ability for low carbon alcohol fuel electro-reforming of hydrogen evolution. J. Energy Chem. 2022, 75, 46–54.

[14]

Zhang, T.; Sun, J. R.; Guan, J. Q. Self-supported transition metal chalcogenides for oxygen evolution. Nano Res. 2023, 16, 8684–8711.

[15]

Du, L. J.; Sun, Y. J.; You, B. Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Mater. Rep.: Energy 2021, 1, 100004.

[16]

Han, J. Y.; Guan, J. Q. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966.

[17]

Xie, J. Y.; Zhang, X. Y.; Yu, N.; Luan, R. N.; Zhang, D. Z.; Zeng, J. B.; Chai, Y. M.; Dong, B. Accelerating Fe sites saturation coverage through Bi-metal dynamic balances on double-layer hollow MOF nanocages for oxygen evolution. Mater. Today Phys. 2022, 27, 100778.

[18]

Sun, K.; Zhao, Y. Q.; Yin, J.; Jin, J.; Liu, H. W.; Xi, P. X. Surface modification of NiCo2O4 nanowires using organic ligands for overall water splitting. Acta Phys. Chim. Sin. 2022, 38, 2107005.

[19]

Wang, C. M.; Geng, Q. H.; Fan, L. L.; Li, J. X.; Ma, L.; Li, C. L. Phase engineering oriented defect-rich amorphous/crystalline RuO2 nanoporous particles for boosting oxygen evolution reaction in acid media. Nano Res. Energy 2023, 2, e9120070.

[20]

Long, X. Y.; Meng, J. Z.; Gu, J. B.; Ling, L. Q.; Li, Q. W.; Liu, N.; Wang, K. W.; Li, Z. Q. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046–2204053.

[21]

Wu, D. L.; Chen, D.; Zhu, J. W.; Mu, S. C. Ultralow Ru incorporated amorphous Cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.

[22]

Liu, H. B.; Gao, J.; Xu, X. C.; Jia, Q. H.; Yang, L.; Wang, S. T.; Cao, D. P. Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chem. Eng. J. 2022, 448, 137706.

[23]

Yan, S.; Liao, W. Y.; Zhong, M. X.; Li, W. M.; Wang, C.; Pinna, N.; Chen, W.; Lu, X. F. Partially oxidized ruthenium aerogel as highly active bifunctional electrocatalyst for overall water splitting in both alkaline and acidic media. Appl. Catal. B: Environ. 2022, 307, 121199.

[24]

Sun, H. N.; Kim, H.; Song, S. Z.; Jung, W. Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Mater. Rep.: Energy 2022, 2, 100092.

[25]

Tang, B.; Yang, X. D.; Kang, Z. H.; Feng, L. G. Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Appl. Catal. B: Environ. 2020, 278, 119281.

[26]

Li, W. Q.; Zhang, H.; Hong, M. Z.; Zhang, L. L.; Feng, X.; Shi, M. F.; Hu, W. X.; Mu, S. C. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chem. Eng. J. 2022, 431, 134072.

[27]

Zhang, D. F.; Li, M. N.; Yong, X.; Song, H. Q.; Waterhouse, G. I. N.; Yi, Y. F.; Xue, B. J.; Zhang, D. L.; Liu, B. Z.; Lu, S. Y. Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nat. Commun. 2023, 14, 2517.

[28]

An, Z. Y.; Xue, H.; Sun, J.; Guo, N. K.; Song, T. S.; Sun, J. W.; Hao, Y. R.; Wang, Q. Co-construction of sulfur vacancies and heterogeneous interface into Ni3S2/MoS2 catalysts to achieve highly efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2208037–2208043.

[29]

Chen, D.; Lu, R. H.; Yao, Y. T.; Wu, D. L.; Zhao, H. Y.; Yu, R. H.; Pu, Z. H.; Wang, P. Y.; Zhu, J. W.; Yu, J. et al. Duetting electronic structure modulation of Ru atoms in RuSe2@NC enables more moderate H* adsorption and water dissociation for hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 7637–7644.

[30]

Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

[31]

Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat. Commun. 2019, 10, 5599.

[32]

Wang, Y. L.; Du, Y. M.; Fu, Z. Q.; Ren, J. H.; Fu, Y. L.; Wang, L. Construction of Ru/FeCoP heterointerface to drive dual active site mechanism for efficient overall water splitting. J. Mater. Chem. A 2022, 10, 16071–16079.

[33]

Zeng, F.; Mebrahtu, C.; Liao, L. F.; Beine, A. K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329.

[34]

Zhou, S. Z.; Jang, H.; Qin, Q.; Li, Z. J.; Kim, M. G.; Li, C.; Liu, X. E.; Cho, J. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 2021, 64, 1408–1417.

[35]

Zhang, Y.; Zhang, S. T.; Ma, J.; Huang, A. J.; Yuan, M. W.; Li, Y. F.; Sun, G. B.; Chen, C.; Nan, C. Y. Oxygen vacancy-rich RuO2-Co3O4 nanohybrids as improved electrocatalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 39239–39247.

[36]

Zhang, Z. H.; Ke, X. X.; Zhang, B.; Deng, J. G.; Liu, Y. X.; Liu, W. W.; Dai, H. X.; Chen, F. R.; Sui, M. L. Facet-dependent cobalt Ion distribution on the Co3O4 nanocatalyst surface. J. Phys. Chem. Lett. 2020, 11, 9913–9919.

[37]

Jiang, Y.; Liu, H.; Jiang, Y. M.; Mao, Y. N.; Shen, W.; Li, M.; He, R. X. Adjustable heterointerface-vacancy enhancement effect in RuO2@Co3O4 electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2023, 324, 122294.

[38]

Zhuang, X. J.; Zhou, Y. T.; Jiang, Z. Q.; Yao, X. Z.; Yu, X. Y. Synergetic electronic modulation and nanostructure engineering of heterostructured RuO2/Co3O4 as advanced bifunctional electrocatalyst for zinc-air batteries. J. Mater. Chem. A 2021, 9, 26669–26675.

[39]

Shi, J. Y.; Wang, N. N.; Du, W. H.; Feng, Y.; Yu, X. Y. Porous RuO2-Co3O4/C nanocubes as high-performance trifunctional electrocatalysts for zinc-air batteries and overall water splitting. Mater. Chem. Front. 2023, 7, 3774–3782.

[40]

Zhao, C. T.; Tang, Y.; Yu, C.; Tan, X. Y.; Banis, M. N.; Li, S. F.; Wan, G.; Huang, H. W.; Zhang, L.; Yang, H. X. et al. Insights into the electronic origin of enhancing the catalytic activity of Co3O4 for oxygen evolution by single atom ruthenium. Nano Today 2020, 34, 100955.

[41]

Xiao, M.; Zhang, C.; Wang, P.; Zeng, W.; Zhu, J.; Li, Y.; Peng, W.; Liu, Q.; Xu, H.; Zhao, Y. et al. Polymetallic phosphides evolved from MOF and LDH dual-precursors for robust oxygen evolution reaction in alkaline and seawater media. Mater. Today Phys. 2022, 24, 100684.

[42]

Kuang, Y. B.; He, R. Z.; Gu, X. C.; Yang, F. L.; Tian, X. L.; Feng, L. G. High polarity catalyst of CoFe alloy/fluoride interconnected by bamboo-like nitrogen-doped carbon nanotubes for efficient oxygen evolution reaction. Chem. Eng. J. 2023, 456, 141055.

[43]

Su, Z. Y.; Huang, Q. P.; Guo, Q.; Hoseini, S. J.; Zheng, F. Q.; Chen, W. Metal-organic framework and carbon hybrid nanostructures: Fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. Nano Res. Energy 2023, 2, e9120078.

[44]

Xu, X. L.; Wang, S.; Guo, S. Q.; San Hui, K.; Ma, J. M.; Dinh, D. A.; Hui, K. N.; Wang, H.; Zhang, L. P.; Zhou, G. W. Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery. Adv. Powder Mater. 2022, 1, 100027.

[45]

Liu, H. Z.; Xia, G. L.; Zhang, R. R.; Jiang, P.; Chen, J. T.; Chen, Q. W. MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694.

[46]

Jadhav, H. S.; Bandal, H. A.; Ramakrishna, S.; Kim, H. Critical review, recent updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its derivatives for electrochemical water splitting. Adv. Mater. 2022, 34, 2107072.

[47]

Zhang, Y.; Wu, J. Y.; Zhang, S. H.; Shang, N. Z.; Zhao, X. X.; Alshehri, S. M.; Ahamad, T.; Yamauchi, Y.; Xu, X. T.; Bando, Y. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy 2022, 97, 107146.

[48]

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K. A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond conventional heating. J. Energy Chem. 2022, 74, 252–282.

[49]

Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.

[50]

Gao, Z.; Fan, G. L.; Liu, M. R.; Yang, L.; Li, F. Dandelion-like cobalt oxide microsphere-supported RuCo bimetallic catalyst for highly efficient hydrogenolysis of 5-hydroxymethylfurfural. Appl. Catal. B: Environ. 2018, 237, 649–659.

[51]

Jiang, Z. L.; Xie, J.; Luo, C. S.; Gao, M. Y.; Guo, H. L.; Wei, M. H.; Zhou, H. J.; Sun, H. 3D web freestanding RuO2-Co3O4 nanowires on Ni foam as highly efficient cathode catalysts for Li-O2 batteries. RSC Adv. 2018, 8, 23397–23403

[52]

Wang, L.; Pan, Y.; Wu, D.; Liu, X. K.; Cao, L. L.; Zhang, W.; Chen, H. L.; Liu, T.; Liu, D.; Chen, T. et al. The in situ formation of defective CoOOH catalysts from semi-oxidized Co for alkaline oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 20011–20017.

[53]

Liu, Z.; Yang, X. D.; Hu, G. Z.; Feng, L. G. Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2020, 8, 9136–9144.

[54]

Ma, G.; Zhang, X. Y.; Zhou, G. F.; Wang, X. Hydrogen production from methanol reforming electrolysis at NiO nanosheets supported Pt nanoparticles. Chem. Eng. J. 2021, 411, 128292.

[55]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[56]

Liu, J.; Xie, J. H.; Wang, R. Y.; Liu, B.; Meng, X.; Xu, X. Q.; Tang, B.; Cai, Z.; Zou, J. L. Interfacial electron modulation of Cu2O by Co3O4 embedded in hollow carbon cube skeleton for boosting oxygen reduction/revolution reactions. Chem. Eng. J. 2022, 450, 137961.

[57]

Liu, H.; Liu, Z.; Wang, F. L.; Feng, L. G. Efficient catalysis of N doped NiS/NiS2 heterogeneous structure. Chem. Eng. J. 2020, 397, 125507.

[58]

He, R. Z.; Li, J. X.; Feng, L. G. NiCoP selenization for enhanced oxygen evolution reaction in alkaline electrolyte. Catal. Commun. 2022, 163, 106407.

[59]

Liu, Z.; Liu, D. Y.; Zhao, L. Y.; Tian, J. Q.; Yang, J.; Feng, L. G. Efficient overall water splitting catalyzed by robust FeNi3N nanoparticles with hollow interiors. J. Mater. Chem. A 2021, 9, 7750–7758.

[60]

Jeong, S.; Mai, H. D.; Nam, K. H.; Park, C. M.; Jeon, K. J. Self-healing graphene-templated platinum-nickel oxide heterostructures for overall water splitting. ACS Nano 2022, 16, 930–938.

[61]

Guo, B. Y.; Zhang, X. Y.; Ma, X.; Chen, T. S.; Chen, Y.; Wen, M. L.; Qin, J. F.; Nan, J.; Chai, Y. M.; Dong, B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution. Int. J. Hydrogen Energy 2020, 45, 9575–9582.

[62]

Gu, X. C.; Ji, Y. G.; Tian, J. Q.; Wu, X.; Feng, L. G. Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131576.

[63]

Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. Chem. Eng. J. 2021, 425, 130686.

[64]

Wang, J.; Hu, J.; Liang, C.; Chang, L. M.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Surface reconstruction of phosphorus-doped cobalt molybdate microarrays in electrochemical water splitting. Chem. Eng. J. 2022, 446, 137094.

[65]

Rajalakshmi, R.; Srividhya, G.; Viswanathan, C.; Ponpandian, N. The intriguing bifunctional effect of strong metal support interaction (SMSI) and hydrogen spillover effect (HSPE) for effective hydrogen evolution reaction. Appl. Catal. B: Environ. 2023, 339, 123089.

File
12274_2023_6316_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2023
Revised: 25 October 2023
Accepted: 03 November 2023
Published: 29 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

L. G. F. and J. Y. X. appreciated the financial support of the National Natural Science Foundation of China (Nos. 21972124 and 22272148) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution. F. F. R. would like to thank the support of National Natural Science Foundation of China (No. 22302168).

Return