Journal Home > Volume 17 , Issue 5

Single-atom catalysts (SACs) reveal great potential for application in catalysis due to their fully exposed active sites. In general, single atoms (SAs) and the coordination substrates need to have strong interactions or charge transfer to ensure the atomic dispersion, which requires the selection of a suitable substrate to stabilize the target atoms. Recent studies have demonstrated that amorphous materials with abundant defects and coordinatively unsaturated sites can be used as substrates for more efficient capturing SAs, further enhancing the catalytic performance. In this review, we discuss recent research progress of SAs loaded on amorphous substrates for enhanced catalytic activity. Firstly, we summarize the commonly used amorphous substrates for stabilizing SAs. Subsequently, we present several advanced applications of amorphous SACs in the field of catalysis, including electrocatalysis and photocatalysis. And then, we also clarify the synergistic mechanism between SAs and amorphous substrate on catalytic process. Finally, we summarize the challenges with our personal views and provide a critical outlook on how amorphous SACs continue to evolve.


menu
Abstract
Full text
Outline
About this article

Unlocking single-atom catalysts via amorphous substrates

Show Author's information Bohua Sun1,2,§Mingyuan Xu4,§Xiaoxia Li4,§Baohong Zhang4Rui Hao6Xiaoyu Fan5( )Binbin Jia3( )Dingshun She1,2( )
School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Zhengzhou Institute, China University of Geosciences (Beijing), Zhengzhou 451283, China
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
School of Chemistry, Beihang University, Beijing 100191, China
Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
National Engineering Research Center of Nonferrous Metals, Materials and Products for New Energy, China GRINM Group Co., Ltd., Beijing 100088, China

§ Bohua Sun, Mingyuan Xu, and Xiaoxia Li contributed equally to this work.

Abstract

Single-atom catalysts (SACs) reveal great potential for application in catalysis due to their fully exposed active sites. In general, single atoms (SAs) and the coordination substrates need to have strong interactions or charge transfer to ensure the atomic dispersion, which requires the selection of a suitable substrate to stabilize the target atoms. Recent studies have demonstrated that amorphous materials with abundant defects and coordinatively unsaturated sites can be used as substrates for more efficient capturing SAs, further enhancing the catalytic performance. In this review, we discuss recent research progress of SAs loaded on amorphous substrates for enhanced catalytic activity. Firstly, we summarize the commonly used amorphous substrates for stabilizing SAs. Subsequently, we present several advanced applications of amorphous SACs in the field of catalysis, including electrocatalysis and photocatalysis. And then, we also clarify the synergistic mechanism between SAs and amorphous substrate on catalytic process. Finally, we summarize the challenges with our personal views and provide a critical outlook on how amorphous SACs continue to evolve.

Keywords: catalysis, synthetic strategy, single-atoms, amorphous substrate

References(135)

[1]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[2]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[3]

Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

[4]

Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

[5]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[6]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[7]

Ismail, N.; Qin, F. J.; Fang, C. H.; Liu, D.; Liu, B. H.; Liu, X. Y.; Wu, Z. L.; Chen, Z.; Chen, W. X. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106.

[8]

Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.

[9]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[10]

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.

[11]

Jin, J.; Han, X.; Fang, Y. Y.; Zhang, Z. D.; Li, Y. P.; Zhang, T. Y.; Han, A. J.; Liu, J. F. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Adv. Funct. Mater. 2022, 32, 2109218.

[12]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[13]

Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

[14]

Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

[15]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[16]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[17]

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-C x S y atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

[18]

He, J.; Li, N.; Li, Z. G.; Zhong, M.; Fu, Z. X.; Liu, M.; Yin, J. C.; Shen, Z. R.; Li, W.; Zhang, J. J. et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.

[19]

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

[20]

Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed. 2022, 61, e202203063

[21]

Fan, H. Y.; Wang, T.; Gong, H.; Jiang, C.; Sun, Z. P.; Zhao, M. M.; Song, L.; He, J. P. Heteroatom sulfur-induced defect engineering in carbon nanotubes: Enhanced electrocatalytic activity of oxygen reduction reaction. Carbon 2021, 180, 31–40.

[22]

Han, H.; Jin, S.; Park, S.; Kim, Y.; Jang, D.; Seo, M. H.; Kim, W. B. Plasma-induced oxygen vacancies in amorphous MnO x boost catalytic performance for electrochemical CO2 reduction. Nano Energy 2021, 79, 105492.

[23]

Ji, J. H.; Yan, Q. Y.; Yin, P. C.; Mine, S.; Matsuoka, M.; Xing, M. Y. Defects on CoS2− x : Tuning redox reactions for sustainable degradation of organic pollutants. Angew. Chem., Int. Ed. 2021, 60, 2903–2908.

[24]

Jia, B. B.; Zhang, B. H.; Cai, Z.; Yang, X. Y.; Li, L. D.; Guo, L. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes. eScience 2023, 3, 100112.

[25]

Jia, B. B.; Chen, W. X.; Luo, J.; Yang, Z.; Li, L. D.; Guo, L. Construction of MnO2 artificial leaf with atomic thickness as highly stable battery anodes. Adv. Mater. 2020, 32, 1906582.

[26]

Zhang, B. H.; Li, Y. H.; Bai, H. Z.; Jia, B. B.; Liu, D.; Li, L. D. Advance in 3D self-supported amorphous nanomaterials for energy storage and conversion. Nano Res. 2023, 16, 10597–10616.

[27]

Jia, B. B.; Yang, J.; Hao, R.; Li, L. D.; Guo, L. Confined synthesis of ultrathin amorphous metal-oxide nanosheets. ACS Mater. Lett. 2020, 2, 610–615.

[28]

Jia, B. B.; Hao, R.; Huang, Z. N.; Hu, P. F.; Li, L. D.; Zhang, Y.; Guo, L. Creating ultrathin amorphous metal hydroxide and oxide nanosheet libraries. J. Mater. Chem. A 2019, 7, 4383–4388.

[29]

Liu, Y.; Liu, X. H.; Jadhav, A. R.; Yang, T.; Hwang, Y.; Wang, H. D.; Wang, L. L.; Luo, Y. G.; Kumar, A.; Lee, J. S. et al. Unraveling the function of metal–amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202114160.

[30]

Liu, J. Z.; Ji, Y. F.; Nai, J. W.; Niu, X. G.; Luo, Y.; Guo, L.; Yang, S. H. Ultrathin amorphous cobalt-vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy Environ. Sci. 2018, 11, 1736–1741.

[31]

Kang, J. X.; Qiu, X. Y.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wan, C. Z.; Liu, L. M.; Duan, X. F.; Guo, L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 2021, 4, 1050–1058.

[32]

Kang, J. X.; Xue, Y. F.; Yang, J.; Hu, Q.; Zhang, Q. H.; Gu, L.; Selloni, A.; Liu, L. M.; Guo, L. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 2022, 144, 8969–8976.

[33]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[34]

Gu, H. F.; Yue, W. C.; Hu, J. Q.; Niu, X. F.; Tang, H.; Qin, F. J.; Li, Y.; Yan, Q.; Liu, X. M.; Xu, W. J. et al. Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2T x MXene as separator coating for lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2204014.

[35]

Chen, J. J.; Gu, S.; Hao, R.; Wang, Z. Y.; Li, M. Q.; Li, Z. Q.; Liu, K.; Liao, K. M.; Wang, Z. Q.; Huang, H. et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022, 41, 2055–2062.

[36]

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

[37]

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

[38]

Wang, K.; Wu, H. Z.; Yuan, W. J.; Xi, W.; Luo, J. Simple physical preparation of single copper atoms on amorphous carbon via Coulomb explosion. Nanoscale 2019, 11, 7595–7599.

[39]

Liu, C. X.; Pan, G. H.; Liang, N. J.; Hong, S.; Ma, J. Y.; Liu, Y. Z. Ir single atom catalyst loaded on amorphous carbon materials with high HER activity. Adv. Sci. 2022, 9, 2105392.

[40]

Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

[41]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[42]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[43]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[44]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[45]

Guo, S. Y.; Yuan, P. F.; Zhang, J. A.; Jin, P. B.; Sun, H. M.; Lei, K. X.; Pang, X. C.; Xu, Q.; Cheng, F. Y. Atomic-scaled cobalt encapsulated in P, N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chem. Commun. 2017, 53, 9862–9865.

[46]

Zhu, X. F.; Tan, X.; Wu, K. H.; Chiang, C. L.; Lin, Y. C.; Lin, Y. G.; Wang, D. W.; Smith, S.; Lu, X. Y.; Amal, R. N. P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 14732–14742.

[47]

Qu, M.; Chen, Z.; Sun, Z. Y.; Zhou, D. N.; Xu, W. J.; Tang, H.; Gu, H. F.; Liang, T.; Hu, P. F.; Li, G. W. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 2023, 16, 2170–2176.

[48]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[49]

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

[50]

Can, M.; Özaslan, H. Chemical synthesis of thiophene-pyrrole copolymer. Acta Chim. Slov. 2003, 50, 741–750.

[51]

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

[52]

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

[53]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503

[54]

Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. 2D g-C3N4 for advancement of photo-generated carrier dynamics: Status and challenges. Mater. Today 2020, 41, 270–303

[55]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

[56]

Li, J. Y.; Zhang, Z. Y.; Cui, W.; Wang, H.; Cen, W. L.; Johnson, G.; Jiang, G. M.; Zhang, S.; Dong, F. The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4. ACS Catal 2018, 8, 8376–8385.

[57]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[58]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.

[59]

Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.

[60]

Tang, R. D.; Gong, D. X.; Zhou, Y. Y.; Deng, Y. C.; Feng, C. Y.; Xiong, S.; Huang, Y.; Peng, G. W.; Li, L. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl. Catal. B: Environ. 2022, 303, 120929.

[61]

Fang, S.; Xia, Y.; Lv, K. L.; Li, Q.; Sun, J.; Li, M. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Appl. Catal. B: Environ. 2016, 185, 225–232.

[62]

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

[63]

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Wu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

[64]

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

[65]

Jia, B. B.; Li, L. D.; Xue, C.; Kang, J. X.; Liu, L. M.; Guo, T. Q.; Wang, Z. C.; Huang, Q. Z.; Guo, S. J. Restraining interfacial Cu2+ by using amorphous SnO2 as sacrificial protection boosts CO2 electroreduction. Adv. Mater. 2023, 35, 2305587.

[66]

Zhao, Z. W.; Zhang, W.; Liu, W.; Li, Y. Y.; Ye, J. Y.; Liang, J. L.; Tong, M. P. Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen. Sci. Total Environ. 2020, 742, 140642.

[67]

Yu, J.; Chen, C.; Zhang, Q. H.; Lin, J.; Yang, X. Y.; Gu, L.; Zhang, H.; Liu, Z.; Wang, Y.; Zhang, S. et al. Au atoms anchored on amorphous C3N4 for single-site Raman enhancement. J. Am. Chem. Soc. 2022, 144, 21908–21915.

[68]

Hu, S.; Qiao, P. Z.; Yi, X. L.; Lei, Y. M.; Hu, H. L.; Ye, J. H.; Wang, D. F. Selective photocatalytic reduction of CO2 to CO mediated by silver single atoms anchored on tubular carbon nitride. Angew. Chem., Int. Ed. 2023, 62, e202304585.

[69]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure–performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[70]

Wang, L. B.; Zhang, W. B.; Wang, S. P.; Gao, Z. H.; Luo, Z. H.; Wang, X.; Zeng, R.; Li, A. W.; Li, H. L.; Wang, M. L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 2016, 7, 14036.

[71]

Sarma, B. B.; Plessow, P. N.; Agostini, G.; Concepción, P.; Pfänder, N.; Kang, L. Q.; Wang, F. R.; Studt, F.; Prieto, G. Metal-specific reactivity in single-atom catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO. J. Am. Chem. Soc. 2020, 142, 14890–14902.

[72]

Yang, B. X.; Myung, N. V.; Tran, T. T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review. Adv. Electron. Mater. 2021, 7, 2100271.

[73]

Yang, Q.; Deng, N. P.; Zhao, Y. X.; Gao, L.; Cheng, B. W.; Kang, W. M. A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chem. Eng. J. 2023, 451, 138532.

[74]

Li, M.; Ye, C.; Li, Z. W.; Lin, Q.; Cao, J. X.; Liu. F.; Song, G. Q.; Kawi, S. 1D confined materials synthesized via a coating method for thermal catalysis and energy storage applications. J. Mater. Chem. A 2022, 10, 6330–6350.

[75]

Xu, J.; Zhang, C. X.; Liu, H. X.; Sun, J. Q.; Xie, R. C.; Qiu, Y.; Lü, F.; Liu, Y. F.; Zhuo, L. C.; Liu, X. J. et al. Amorphous MoO X -stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529.

[76]

Dong, S.; Liu, W.; Liu, S.; Li, F.; Hou, J.; Hao, R.; Bai, X.; Zhao, H.; Liu, J.; Guo, L. Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction. Mater. Today Nano 2022, 17, 100157.

[77]

Zhang, M.; Xu, W. P.; Ma, C. L.; Yu, J. Y.; Liu, Y. T.; Ding, B. Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers. ACS Nano 2022, 16, 4186–4196.

[78]

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

[79]

Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

[80]

Li, Y. G.; Hao, J. C.; Song, H.; Zhang, F. Y.; Bai, X. H.; Meng, X. G.; Zhang, H. Y.; Wang, S. F.; Hu, Y.; Ye, J. H. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.

[81]

Liu, P. G.; Huang, Z. X.; Yang, S. K.; Du, J. Y.; Zhang, Y. D.; Cao, R.; Chen, C.; Li, L.; Chen, T.; Wang, G. M. et al. Support amorphization engineering regulates single-atom Ru as an electron pump for nitrogen photofixation. ACS Catal. 2022, 12, 8139–8146.

[82]

Du, J. Y.; Huang, Y.; Huang, Z. X.; Wu, G.; Wu, B.; Han, X.; Chen, C.; Zheng, X. S.; Cui, P. X.; Wu, Y. E. et al. Reversing the catalytic selectivity of single-atom Ru via support amorphization. JACS Au 2022, 2, 1078–1083.

[83]

Chen, K.; Wang, J. X.; Zhang, H.; Ma, D. W.; Chu, K. Self-tandem electrocatalytic NO reduction to NH3 on a W single- atom catalyst. Nano Lett. 2023, 23, 1735–1742.

[84]

Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-Block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288.

[85]

Chen, K.; Zhang, N. N.; Wang, F. Z.; Kang, J. L.; Chu, K. Main-group indium single-atom catalysts for electrocatalytic NO reduction to NH3. J. Mater. Chem. A 2023, 11, 6814–6819.

[86]

Chen, K.; Wang, G. H.; Guo, Y. L.; Ma, D. W.; Chu, K. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res. 2023, 16, 8737–8742.

[87]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuS x for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[88]

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy. Mater. 2021, 11, 2002816.

[89]

Luo, X.; Wei, X. Q.; Zhong, H.; Wang, H. J.; Wu, Y.; Wang, Q.; Gu, W. L.; Gu, M.; Beckman, S. P.; Zhu, C. Z. Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 3539–3546.

[90]

Jiang, B.; Xue, H. R.; Wang, P.; Du, H. R.; Kang, Y. Q.; Zhao, J. J.; Wang, S. Y.; Zhou, W.; Bian, Z. F.; Li, H. X. et al. Noble-metal-metalloid alloy architectures: Mesoporous amorphous iridium-tellurium alloy for electrochemical N2 reduction. J. Am. Chem. Soc. 2023, 145, 6079–6086.

[91]

Chu, S. L.; Yu, M. H.; Pan, Y.; Hu, S. X.; Liu, B. Q.; Lu, T.; Zeng, F. Y.; Luo, S. L. Nitrogen-rich W-N clusters with atomic disorders and non-grain boundaries confined in carbon nanosheets boosting sodium-ion storage. Small 2023, 19, 2300619.

[92]

Wu, D. L.; Liu, B.; Li, R. D.; Chen, D.; Zeng, W. H.; Zhao, H. Y.; Yao, Y. T.; Qin, R.; Yu, J.; Chen, L. et al. Fe-regulated amorphous-crystal Ni(Fe)P2 nanosheets coupled with Ru powerfully drive seawater splitting at large current density. Small 2023, 19, 2300030.

[93]

Yu, Z. Y.; Lv, S. Y.; Yao, Q.; Fang, N.; Xu, Y.; Shao, Q.; Pao, C. W.; Lee, J. F.; Li, G. L.; Yang, L. M. et al. Low-coordinated Pd site within amorphous palladium selenide for active, selective, and stable H2O2 electrosynthesis. Adv. Mater. 2023, 35, 2208101.

[94]

Gao, T. T.; Tang, X. M.; Li, X. Q.; Wu, S. W.; Yu, S. M.; Li, P. P.; Xiao, D.; Jin, Z. Y. Understanding the atomic and defective interface effect on ruthenium clusters for the hydrogen evolution reaction. ACS Catal. 2023, 13, 49–59.

[95]

Liu, J. Z.; Nai, J. W.; You, T. T.; An, P. F.; Zhang, J.; Ma, G. S.; Niu, X. G.; Liang, C. Y.; Yang, S. H.; Guo, L. The flexibility of an amorphous cobalt hydroxide nanomaterial promotes the electrocatalysis of oxygen evolution reaction. Small 2018, 14, 1703514.

[96]

Zhou, B. H.; Gao, R. J.; Zou, J. J.; Yang, H. M. Surface design strategy of catalysts for water electrolysis. Small 2022, 18, 2202336.

[97]

Bodhankar, P. M.; Sarawade, P. B.; Kumar, P.; Vinu, A.; Kulkarni, A. P.; Lokhande, C. D.; Dhawale, D. S. Nanostructured metal phosphide based catalysts for electrochemical water splitting: A review. Small 2022, 18, 2107572.

[98]

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

[99]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad44998.

[100]

Guo, T. Q.; Li, L. D.; Wang, Z. C. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2200827.

[101]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[102]

Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

[103]

Kornienko, N.; Resasco, J.; Becknell, N.; Jian, C. M.; Liu, Y. S.; Nie, K. Q.; Sun, X. H.; Guo, J. H.; Leone, S. R.; Yang, P. D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7448–7455.

[104]

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

[105]

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

[106]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[107]

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

[108]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[109]

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

[110]

Cheng, X.; Xiao, B.; Chen, Y. H.; Wang, Y. S.; Zheng, L. R.; Lu, Y.; Li, H. Y., Chen, G. Ligand charge donation–acquisition balance: A unique strategy to boost single Pt atom catalyst mass activity toward the hydrogen evolution reaction. ACS Catal 2022, 12, 5970–5978.

[111]

Cao, L. L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y. E.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

[112]

Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E. et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoO x nanosheets. ACS Catal. 2021, 11, 123–130.

[113]

Feng, D.; Wang, P. Y.; Qin, R.; Shi, W. J.; Gong, L.; Zhu, J. W.; Ma, Q. L.; Chen, L.; Yu, J.; Liu, S. L. et al. Flower-like amorphous MoO3− x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv. Sci. 2023, 10, 2300342.

[114]

Suhadolnik, L.; Bele, M.; Čekada, M.; Jovanovič, P.; Maselj, N.; Lončar, A.; Dražić, G.; Šala, M.; Hodnik, N.; Kovač, J. et al. Nanotubular TiO x N y -supported Ir single atoms and clusters as thin-film electrocatalysts for oxygen evolution in acid media. Chem. Mater. 2023, 35, 2612–2623.

[115]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[116]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[117]

Wu, T. W.; Melander, M. M.; Honkala, K. Coadsorption of NRR and HER Intermediates determines the performance of Ru-N4 toward electrocatalytic N2 reduction. ACS Catal. 2022, 12, 2505–2512.

[118]

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

[119]

Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2− x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.

[120]

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

[121]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[122]

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.

[123]

Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

[124]

Yuan, Y.; Wang, J. C.; Adimi, S.; Shen, H. J.; Thomas, T.; Ma, R. G.; Attfield, J. P.; Yang, M. H. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 2020, 19, 282–286.

[125]

Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

[126]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[127]

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

[128]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[129]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[130]

Rahman, M. Z.; Tapping, P. C.; Kee, T. W.; Smernik, R.; Spooner, N.; Moffatt, J.; Tang, Y. H.; Davey, K.; Qiao, S. Z. A Benchmark quantum yield for water photoreduction on amorphous carbon nitride. Adv. Funct. Mater. 2017, 27, 1702384.

[131]

Jiang, X. H.; Zhang, L. S.; Liu, H. Y.; Wu, D. S.; Wu, F. Y.; Tian, L.; Liu, L. L.; Zou, J. P.; Luo, S. L.; Chen, B. B. Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 23112–23116.

[132]

Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123.

[133]

Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Dual photocatalytic roles of light: Charge separation at the band gap and heat via localized surface Plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301.

[134]

Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

[135]

Zhang, R. Y.; Li, P. H.; Wang, F.; Ye, L. Q.; Gaur, A.; Huang, Z. A.; Zhao, Z. Y.; Bai, Y.; Zhou, Y. Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. Appl. Catal. B: Environ. 2019, 250, 273–279.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2023
Revised: 02 November 2023
Accepted: 02 November 2023
Published: 16 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22305051), the National Key Research and Development Project (No. 2023YFF0611100), the Fundamental Research Funds for the Central Universities (No. 265QZ2022002) and the Natural Science Foundation of Henan Province (No. 232300421104), the Funding of GRIMAT Engineering Institute (No. 5222201), and the National Key R&D Program of China (No. 2021YFB4001301-2)

Return