Journal Home > Volume 17 , Issue 5

The global practical implementation of proton exchange membrane fuel cells (PEMFCs) heavily relies on the advancement of highly effective platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR). To achieve high ORR performance, electrocatalysts with highly accessible reactive surfaces are needed to promote the uncovering of active positions for easy mass transportation. In this critical review, we introduce different approaches for the emerging development of effective ORR electrocatalysts, which offer high activity and durability. The strategies, including morphological engineering, geometric configuration modification via supporting materials, alloys regulation, core–shell, and confinement engineering of single atom electrocatalysts (SAEs), are discussed in line with the goals and requirements of ORR performance enhancement. We review the ongoing development of Pt electrocatalysts based on the syntheses, nanoarchitecture, electrochemical performances, and stability. We eventually explore the obstacles and research directions on further developing more effective electrocatalysts.


menu
Abstract
Full text
Outline
About this article

Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts

Show Author's information Asad Ali1Aatto Laaksonen1,2,3,4Guo Huang1Shahid Hussain1Shuiping Luo5Wen Chen5Pei Kang Shen6( )Jinliang Zhu6( )Xiaoyan Ji1( )
Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Iasi 700469, Romania
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
School of Resources, Environment and Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China

Abstract

The global practical implementation of proton exchange membrane fuel cells (PEMFCs) heavily relies on the advancement of highly effective platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR). To achieve high ORR performance, electrocatalysts with highly accessible reactive surfaces are needed to promote the uncovering of active positions for easy mass transportation. In this critical review, we introduce different approaches for the emerging development of effective ORR electrocatalysts, which offer high activity and durability. The strategies, including morphological engineering, geometric configuration modification via supporting materials, alloys regulation, core–shell, and confinement engineering of single atom electrocatalysts (SAEs), are discussed in line with the goals and requirements of ORR performance enhancement. We review the ongoing development of Pt electrocatalysts based on the syntheses, nanoarchitecture, electrochemical performances, and stability. We eventually explore the obstacles and research directions on further developing more effective electrocatalysts.

Keywords: oxygen reduction reaction (ORR), Pt-based electrocatalysts, proton exchange membrane fuel cells (PEMFCs), morphology and alloys strategies, single atom electrocatalysts (SAEs)

References(126)

[1]

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

[2]

Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189–22217.

[3]

Ali, A.; Shen, P. K. Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2020, 2, 99–121.

[4]

Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.

[5]

Ali, A.; Shen, P. K. Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 2020, 3, 370–394.

[6]

Singh, K.; Tetteh, E. B.; Lee, H. Y.; Kang, T. H.; Yu, J. S. Tailor-made Pt catalysts with improved oxygen reduction reaction stability/durability. ACS Catal. 2019, 9, 8622–8645.

[7]

Sharma, M.; Jung, N.; Yoo, S. J. Toward high-performance Pt-based nanocatalysts for oxygen reduction reaction through organic-inorganic hybrid concepts. Chem. Mater. 2018, 30, 2–24.

[8]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[9]

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

[10]

Zhou, Y.; Chen, B. Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review. Renew. Sustain. Energy Rev. 2023, 185, 113584.

[11]

Van Der Linden, F.; Pahon, E.; Morando, S.; Bouquain, D. A review on the proton-exchange membrane fuel cell break-in physical principles, activation procedures, and characterization methods. J. Power Sources 2023, 575, 233168.

[12]

Hao, C.; Meng, Q. H.; Yan, B. W.; Liu, J.; Yang, B.; Feng, L. G.; Shen, P. K.; Tian, Z. Q. Efficient catalyst layer with ultra-low Pt loading for proton exchange membrane fuel cell. Chem. Eng. J. 2023, 472, 144945.

[13]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[14]

Chen, Q. Y.; Chen, Z. Y.; Ali, A.; Luo, Y. Q.; Feng, H. Y.; Luo, Y. Y.; Tsiakaras, P.; Shen, P. K. Shell-thickness-dependent Pd@PtNi core–shell nanosheets for efficient oxygen reduction reaction. Chem. Eng. J. 2022, 427, 131565.

[15]

Gómez-Marín, A. M.; Ticianelli, E. A. A reviewed vision of the oxygen reduction reaction mechanism on Pt-based catalysts. Curr. Opin. Electrochem. 2018, 9, 129–136.

[16]
Lyu, D. D.; Yao, S. X.; Ali, A.; Tian, Z. Q.; Tsiakaras, P.; Shen, P. K. N, S codoped carbon matrix-encapsulated Co9S8 nanoparticles as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv. Energy Mater. 2021 , 11, 2101249.
[17]
Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, https://doi.org/10.1007/s12274-023-5700-4.
[18]

Sakthivel, M.; Drillet, J. F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl. Catal. B Environ. 2018, 231, 62–72.

[19]

Banham, D.; Ye, S. Y.; Pei, K.; Ozaki, J. I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348.

[20]

Hu, S. Q.; Li, X. L.; Ali, A.; Zhang, X. Y.; Shen, P. K. Large-scale synthesis of porous Pt nanospheres/three-dimensional graphene hybrid materials as a highly active and stable electrocatalyst for oxygen reduction reaction. ChemistrySelect 2021, 6, 2080–2084.

[21]

Stacy, J.; Regmi, Y. N.; Leonard, B.; Fan, M. H. The recent progress and future of oxygen reduction reaction catalysis: A review. Renew. Sustain. Energy Rev. 2017, 69, 401–414.

[22]

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

[23]

Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

[24]

Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.

[25]

Luo, Y.; Alonso-Vante, N. The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the Art. Electrochim. Acta 2015, 179, 108–118.

[26]

Li, C. L.; Tan, H. B.; Lin, J. J.; Luo, X. L.; Wang, S. P.; You, J.; Kang, Y. M.; Bando, Y.; Yamauchi, Y.; Kim, J. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018, 21, 91–105.

[27]

Wu, D. Z.; Shen, X. C.; Pan, Y. B.; Yao, L. B.; Peng, Z. M. Platinum alloy catalysts for oxygen reduction reaction: Advances, challenges and perspectives. ChemNanoMat 2020, 6, 32–41.

[28]

Zhao, J. Y.; Lian, J.; Zhao, Z. X.; Wang, X. M.; Zhang, J. J. A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions. Nano-Micro Lett. 2023, 15, 19.

[29]

Nayak, S.; McPherson, I. J.; Vincent, K. A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew. Chem. 2018, 130, 13037–13040.

[30]

Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 15938.

[31]
Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019 , 4, 60–67.
[32]

Lu, S. L.; Eid, K.; Deng, Y. Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtIr tripods with a dendritic surface as an efficient catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 9107–9112.

[33]

Park, J.; Wang, H. L.; Vara, M.; Xia, Y. N. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem 2016, 9, 2855–2861.

[34]

Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.

[35]

Strickler, A. L.; Jackson, A.; Jaramillo, T. F. Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction. ACS Energy Lett. 2017, 2, 244–249.

[36]

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

[37]

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

[38]

Park, J.; Zhang, L.; Choi, S. I.; Roling, L. T.; Lu, N.; Herron, J. A.; Xie, S. F.; Wang, J. G.; Kim, M. J.; Mavrikakis, M. et al. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 2015, 9, 2635–2647.

[39]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[40]

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

[41]

Wu, R. F.; Tsiakaras, P.; Shen, P. K. Facile synthesis of bimetallic Pt-Pd symmetry-broken concave nanocubes and their enhanced activity toward oxygen reduction reaction. Appl. Catal. B Environ. 2019, 251, 49–56.

[42]

Zhu, X. X.; Huang, L.; Wei, M.; Tsiakaras, P.; Shen, P. K. Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B Environ. 2021, 281, 119460.

[43]

Hu, S. Q.; Wang, Z.; Chen, H. L.; Wang, S. B.; Li, X. G.; Zhang, X. Y.; Shen, P. K. Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. J. Electroanal. Chem. 2020, 870, 114194.

[44]

Wu, R. F.; Li, Y. J.; Gong, W. H.; Shen, P. K. One-pot synthesis of Pt-Pd bimetallic nanodendrites with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Sustain. Chem. Eng. 2019, 7, 8419–8428.

[45]

Chen, H. L.; Wu, R. F.; Shen, P. K. One-pot fabrication of site-selective hexapod PtPdCu concave rhombic dodecahedrons as highly efficient catalysts for electrocatalysis. ACS Sustain. Chem. Eng. 2020, 8, 1520–1526.

[46]

Ma, L.; Wang, C. M.; Xia, B. Y.; Mao, K. K.; He, J. W.; Wu, X. J.; Xiong, Y. J.; Lou, X. W. Platinum multicubes prepared by Ni2+-mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 5666–5671.

[47]

Zhang, W. C.; Li, F.; Shi, F. L.; Hu, H.; Liang, J.; Yang, H. Y.; Ye, Y. L.; Mao, Z. S.; Shang, W.; Deng, T. et al. Tensile-strained platinum-cobalt alloy surface on palladium octahedra as a highly durable oxygen reduction catalyst. ACS Appl. Mater. Interfaces 2023, 15, 3993–4000.

[48]

Chen, G. Y.; Kuttiyiel, K. A.; Li, M.; Su, D.; Du, L.; Du, C. Y.; Gao, Y. Z.; Fei, W. D.; Yin, G. P.; Sasaki, K. et al. Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 20725–20736.

[49]

Zhang, L. L.; Zhu, S. Q.; Chang, Q. W.; Su, D.; Yue, J.; Du, Z.; Shao, M. H. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid. ACS Catal. 2016, 6, 3428–3432.

[50]

Wang, Z. X.; Yao, X. Z.; Kang, Y. Q.; Miao, L. Q.; Xia, D. S.; Gan, L. Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity. Adv. Funct. Mater. 2019, 29, 1902987.

[51]

Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.

[52]

Hoque, A.; Hassan, F. M.; Higgins, D.; Choi, J. Y.; Pritzker, M.; Knights, S.; Ye, S. Y.; Chen, Z. W. Multigrain platinum nanowires consisting of oriented nanoparticles anchored on sulfur-doped graphene as a highly active and durable oxygen reduction electrocatalyst. Adv. Mat. 2015, 27, 1229–1234.

[53]

Chen, Y. L.; Cheng, T.; Goddard III, W. A. Atomistic explanation of the dramatically improved oxygen reduction reaction of jagged platinum nanowires, 50 times better than Pt. J. Am. Chem. Soc. 2020, 142, 8625–8632.

[54]

Ma, Y. L.; Gao, W. P.; Shan, H.; Chen, W. L.; Shang, W.; Tao, P.; Song, C. Y.; Addiego, C.; Deng, T.; Pan, X. Q. et al. Platinum-based nanowires as active catalysts toward oxygen reduction reaction: In situ observation of surface-diffusion-assisted, solid-state oriented attachment. Adv. Mater. 2017, 29, 1703460.

[55]

Jin, H.; Xu, Z. W.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S. L.; Dong, S. H.; Liu, J. F. et al. Mesoporous Pt@Pt-skin Pt3Ni core–shell framework nanowire electrocatalyst for efficient oxygen reduction. Nat. Commun. 2023, 14, 1518.

[56]

Zhu, J. L.; He, G. Q.; Tian, Z. Q.; Liang, L. Z.; Shen, P. K. Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochim. Acta 2016, 194, 276–282.

[57]

Kim, T. H.; Jung, C. Y.; Bose, R.; Yi, S. C. Cobalt encapsulated in the nitrogen and sulfur co-doped carbon nanotube supported platinum for the oxygen reduction reaction catalyst. Carbon 2018, 139, 656–665.

[58]

Yu, F. Y.; Xie, Y. J.; Wang, L. K.; Yang, N. T.; Meng, X. X.; Wang, X. B.; Tian, X. L.; Yang, X. Platinum supported on multifunctional titanium cobalt oxide nanosheets assembles for efficient oxygen reduction reaction. Electrochim. Acta 2018, 265, 364–371.

[59]

Teran-Salgado, E.; Bahena-Uribe, D.; Márquez-Aguilar, P. A.; Reyes-Rodriguez, J. L.; Cruz-Silva, R.; Solorza-Feria, O. Platinum nanoparticles supported on electrochemically oxidized and exfoliated graphite for the oxygen reduction reaction. Electrochim. Acta 2019, 298, 172–185.

[60]

Hussain, S.; Kongi, N.; Erikson, H.; Rähn, M.; Merisalu, M.; Matisen, L.; Paiste, P.; Aruväli, J.; Sammelselg, V.; Estudillo-Wong, L. A. et al. Platinum nanoparticles photo-deposited on SnO2-C composites: An active and durable electrocatalyst for the oxygen reduction reaction. Electrochim. Acta 2019, 316, 162–172.

[61]

Nan, H. X.; Dang, D.; Tian, X. L. Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 6065–6073.

[62]

Hoque, A.; Hassan, F. M.; Seo, M. H.; Choi, J. Y.; Pritzker, M.; Knights, S.; Ye, S. Y.; Chen, Z. W. Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy 2016, 19, 27–38.

[63]

Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27, 277–281.

[64]

Zheng, Y. Y.; Zhang, J.; Zhan, H. T.; Sun, D. L.; Dang, D.; Tian, X. L. Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem. Commun. 2018, 91, 31–35.

[65]

Hu, S. Q.; Liu, Y. Y.; Wang, S. B.; Zhang, X. Y.; Shen, P. K. Ultrathin Co3O4-Pt core–shell nanoparticles coupled with three-dimensional graphene for oxygen reduction reaction. Int. J. Hyd. Energy 2021, 46, 10303–10311.

[66]

Xu, C. X.; Fan, C. C.; Zhang, X. L.; Chen, H. T.; Liu, X. T.; Fu, Z. M.; Wang, R. R.; Hong, T.; Cheng, J. G. MXene (Ti3C2T x ) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl. Mater. Interfaces 2020, 12, 19539–19546.

[67]

Mirshekari, G. R.; Rice, C. A. Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment. J. Power Sources 2018, 396, 606–614.

[68]

Mo, R. C.; Zhang, X. R.; Chen, Z. Y.; Huang, S. L.; Li, Y. J.; Liang, L. Z.; Tian, Z. Q.; Shen, P. K. Highly efficient PtCo nanoparticles on Co-N-C nanorods with hierarchical pore structure for oxygen reduction reaction. Int. J. Hyd. Energy 2021, 46, 15991–16002.

[69]

Gao, Y. F.; Uchiyama, T.; Yamamoto, K.; Watanabe, T.; Thakur, N.; Sato, R.; Teranishi, T.; Imai, H.; Sakurai, Y.; Uchimoto, Y. Protection against absorption passivation on platinum by a nitrogen-doped carbon shell for enhanced oxygen reduction reaction. ACS Appl. Mater. Interfaces 2023, 15, 30240–30248.

[70]

Park, J. H.; Kim, K.; Wang, X. Y.; Huda, M.; Sawada, Y.; Matsuo, Y.; Saito, N.; Kawasumi, M. Highly durable graphene-encapsulated platinum-based electrocatalyst for oxygen reduction reactions synthesized by solution plasma process. J. Power Sources 2023, 580, 233419.

[71]

Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

[72]

Zhu, J. L.; Wei, P. C.; Li, K. K.; He, S. B.; Pan, Z. Y.; Nie, S. X.; Key, J.; Shen, P. K. Self-assembled nanofiber networks of well-separated B and N codoped carbon as Pt supports for highly efficient and stable oxygen reduction electrocatalysis. ACS Sustain. Chem. Eng. 2019, 7, 660–668.

[73]

Lin, G. X.; Ju, Q. J.; Jin, Y.; Qi, X. H.; Liu, W. J.; Huang, F. Q.; Wang, J. C. Suppressing dissolution of Pt-based electrocatalysts through the electronic metal–support interaction. Adv. Energy Mater. 2021, 11, 2101050.

[74]

Zhao, S.; Wangstrom, A. E.; Liu, Y.; Rigdon, W. A.; Mustain, W. E. Stability and activity of Pt/ITO electrocatalyst for oxygen reduction reaction in alkaline media. Electrochim. Acta 2015, 157, 175–182.

[75]

Hsieh, B. J.; Tsai, M. C.; Pan, C. J.; Su, W. N.; Rick, J.; Lee, J. F.; Yang, Y. W.; Hwang, B. J. Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Mater. 2017, 9, e403.

[76]

Estudillo-Wong, L. A.; Luo, Y.; Díaz-Real, J. A.; Alonso-Vante, N. Enhanced oxygen reduction reaction stability on platinum nanoparticles photo-deposited onto oxide-carbon composites. Appl. Catal. B Environ. 2016, 187, 291–300.

[77]

Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

[78]

Jia, Q. Q.; Liang, W. T.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: In situ observation of the linear composition-strain-activity relationship. ACS Nano 2015, 9, 387–400.

[79]

Jung, C.; Lee, C.; Bang, K.; Lim, J.; Lee, H.; Ryu, H. J.; Cho, E.; Lee, H. M. Synthesis of chemically ordered Pt3Fe/C intermetallic electrocatalysts for oxygen reduction reaction with enhanced activity and durability via a removable carbon coating. ACS Appl. Mater. Interfaces 2017, 9, 31806–31815.

[80]

Brandiele, R.; Durante, C.; Grądzka, E.; Rizzi, G. A.; Zheng, J.; Badocco, D.; Centomo, P.; Pastore, P.; Granozzi, G.; Gennaro, A. One step forward to a scalable synthesis of platinum-yttrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 12232–12240.

[81]

Chang, F. F.; Yu, G.; Shan, S. Y.; Skeete, Z.; Wu, J. F.; Luo, J.; Ren, Y.; Petkov, V.; Zhong, C. J. Platinum-nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 12557–12568.

[82]

Godínez-Salomón, F.; Mendoza-Cruz, R.; Arellano-Jimenez, M. J.; Jose-Yacaman, M.; Rhodes, C. P. Metallic two-dimensional nanoframes: Unsupported hierarchical nickel-platinum alloy nanoarchitectures with enhanced electrochemical oxygen reduction activity and stability. ACS Appl. Mater. Interfaces 2017, 9, 18660–18674.

[83]

Chang, F. F.; Bai, Z. Y.; Li, M.; Ren, M. Y.; Liu, T. C.; Yang, L.; Zhong, C. J.; Lu, J. Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett. 2020, 20, 2416–2422.

[84]

Yin, S. F.; Xie, Z. Y.; Deng, X. T.; Xuan, W.; Duan, Y. R.; Zhang, S. H.; Liang, Y. L. Simple synthesis of ordered platinum-gold nanoparticles with the enhanced catalytic activity for oxygen reduction reaction. J. Electroanal. Chem. 2020, 856, 113707.

[85]

Zhang, E. H.; Ma, F. F.; Liu, J.; Sun, J. Y.; Chen, W. X.; Rong, H. P.; Zhu, X. Y.; Liu, J. J.; Xu, M.; Zhuang, Z. B. et al. Porous platinum-silver bimetallic alloys: Surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale 2018, 10, 21703–21711.

[86]

Ying, J.; Jiang, G. P.; Cano, Z. P.; Ma, Z.; Chen, Z. W. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Appl. Catal. B Environ. 2018, 236, 359–367.

[87]

Čolić, V.; Bandarenka, A. S. Pt alloy electrocatalysts for the oxygen reduction reaction: From model surfaces to nanostructured systems. ACS Catal. 2016, 6, 5378–5385.

[88]

Zhang, L. Z.; Fischer, J. M. T. A.; Jia, Y.; Yan, X. C.; Xu, W.; Wang, X. Y.; Chen, J.; Yang, D. J.; Liu, H. W.; Zhuang, L. Z. et al. Coordination of atomic Co–Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

[89]

Wang, X.; Zhao, Z. L.; Sun, P.; Li, F. W. One-step synthesis of supported high-index faceted platinum-cobalt nanocatalysts for an enhanced oxygen reduction reaction. ACS Appl. Energy Mater. 2020, 3, 5077–5082.

[90]

Mezzavilla, S.; Baldizzone, C.; Swertz, A. C.; Hodnik, N.; Pizzutilo, E.; Polymeros, G.; Keeley, G. P.; Knossalla, J.; Heggen, M.; Mayrhofer, K. J. J. et al. Structure–activity–stability relationships for space-confined Pt x Ni y nanoparticles in the oxygen reduction reaction. ACS Catal. 2016, 6, 8058–8068.

[91]

Coleman, E. J.; Chowdhury, M. H.; Co, A. C. Insights into the oxygen reduction reaction activity of Pt/C and PtCu/C catalysts. ACS Catal. 2015, 5, 1245–1253.

[92]

Bordley, J. A.; El-Sayed, M. A. Enhanced electrocatalytic activity toward the oxygen reduction reaction through alloy formation: Platinum-silver alloy nanocages. J. Phys. Chem. C 2016, 120, 14643–14651.

[93]

Yavuz, E.; Özdokur, K. V.; Çakar, İ.; Koçak, S.; Ertaş, F. N. Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochim. Acta 2015, 151, 72–80.

[94]

Wang, X. M.; Orikasa, Y.; Uchimoto, Y. Platinum-based electrocatalysts for the oxygen-reduction reaction: Determining the role of pure electronic charge transfer in electrocatalysis. ACS Catal. 2016, 6, 4195–4198.

[95]

Wang, W.; Wang, Z. Y.; Wang, J. J.; Zhong, C. J.; Liu, C. J. Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Adv. Sci. 2017, 4, 1600486.

[96]

Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

[97]

Brown, R.; Vorokhta, M.; Khalakhan, I.; Dopita, M.; Vonderach, T.; Skála, T.; Lindahl, N.; Matolínová, I.; Grönbeck, H.; Neyman, K. M. et al. Unraveling the surface chemistry and structure in highly active sputtered Pt3Y catalyst films for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 4454–4462.

[98]

Tu, W. Z.; Luo, W. J.; Chen, C. L.; Chen, K.; Zhu, E. B.; Zhao, Z. P.; Wang, Z. L.; Hu, T.; Zai, H. C.; Ke, X. X. et al. Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2020, 30, 1908230.

[99]

Dai, S.; Chou, J. P.; Wang, K. W.; Hsu, Y. Y.; Hu, A.; Pan, X. Q.; Chen, T. Y. Platinum-trimer decorated cobalt-palladium core–shell nanocatalyst with promising performance for oxygen reduction reaction. Nat. Commun. 2019, 10, 440.

[100]

Liu, F.; Sun, K.; Rui, Z. Y.; Liu, J. G.; Juan, T.; Liu, R. R.; Luo, J.; Wang, Z. W.; Yao, Y. F.; Huang, L. et al. Highly durable and active ternary Pt-Au-Ni electrocatalyst for oxygen reduction reaction. ChemCatChem 2018, 10, 3049–3056.

[101]

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

[102]

Zhao, R. P.; Chen, Z. J.; Huang, S. M. Rapid synthesis of hollow PtPdCu trimetallic octahedrons at room temperature for oxygen reduction reactions in acid media. CrystEngComm 2020, 22, 1586–1592.

[103]

Sial, M. A. Z. G.; Lin, H. F.; Zulfiqar, M.; Ullah, S.; Ni, B.; Wang, X. Trimetallic PtCoFe alloy monolayer superlattices as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Small 2017, 13, 1700250.

[104]

Loukrakpam, R.; Wanjala, B. N.; Yin, J.; Fang, B.; Luo, J.; Shao, M. H.; Protsailo, L.; Kawamura, T.; Chen, Y. S.; Petkov, V. et al. Structural and electrocatalytic properties of PtIrCo/C catalysts for oxygen reduction reaction. ACS Catal. 2011, 1, 562–572.

[105]

Deng, X. T.; Yin, S. F.; Xie, Z. Y.; Gao, F.; Jiang, S.; Zhou, X. Synthesis of silver@platinum-cobalt nanoflower on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction. Int. J. Hyd. Energy 2021, 46, 17731–17740.

[106]

Alfaro-López, H. M.; Valdés-Madrigal, M. A.; Rojas-Chávez, H.; Cruz-Martínez, H.; Padilla-Islas, M. A.; Tellez-Cruz, M. M.; Solorza-Feria, O. A trimetallic Pt2NiCo/C electrocatalyst with enhanced activity and durability for oxygen reduction reaction. Catalysts 2020, 10, 170.

[107]

Wang, H. J.; Li, Y. H.; Deng, K.; Li, C. J.; Xue, H. R.; Wang, Z. Q.; Li, X. N.; Xu, Y.; Wang, L. Trimetallic PtPdNi-truncated octahedral nanocages with a well-defined mesoporous surface for enhanced oxygen reduction electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 4252–4257.

[108]

Lokanathan, M.; Patil, I. M.; Kakade, B. Trimetallic PtNiCo nanoflowers as efficient electrocatalysts towards oxygen reduction reaction. Int. J. Hyd. Energy 2018, 43, 8983–8990.

[109]

Tinoco-Muñoz, C. V.; Reyes-Rodríguez, J. L.; Bahena-Uribe, D.; Leyva, M. A.; Cabañas-Moreno, J. G.; Solorza-Feria, O. Preparation, characterization and electrochemical evaluation of Ni-Pd and Ni-Pd-Pt nanoparticles for the oxygen reduction reaction. Int. J. Hyd. Energy 2016, 41, 23272–23280.

[110]

Cruz-Martínez, H.; Tellez-Cruz, M. M.; Rojas-Chávez, H.; Ramírez-Herrera, C. A.; Calaminici, P.; Solorza-Feria, O. NiPdPt trimetallic nanoparticles as efficient electrocatalysts towards the oxygen reduction reaction. Int. J. Hyd. Energy 2019, 44, 12463–12469.

[111]

Eid, K.; Wang, H. J.; Malgras, V.; Alothman, Z. A.; Yamauchi, Y.; Wang, L. Trimetallic PtPdRu dendritic nanocages with three-dimensional electrocatalytic surfaces. J. Phys. Chem. C 2015, 119, 19947–19953.

[112]

Deng, Y. Y.; Yin, S. L.; Liu, Y. Y.; Lu, Y. D.; Cao, X. Q.; Wang, L.; Wang, H. J.; Zhao, Y. L.; Gu, H. W. Mesoporous AgPdPt nanotubes as electrocatalysts for the oxygen reduction reaction. ACS Appl. Nano Mater. 2019, 2, 1876–1882.

[113]

Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick ptnirh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.

[114]

Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

[115]

Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421.

[116]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[117]

Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

[118]

Xiao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

[119]

Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

[120]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[121]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[122]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[123]

Yang, Z.; Xiang, M.; Zhu, Y. F.; Hui, J.; Jiang, Y.; Dong, S.; Yu, C. B.; Ou, J. F.; Qin, H. F. Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2021, 426, 131347.

[124]

Wei, X. Q.; Luo, X.; Wu, N. N.; Gu, W. L.; Lin, Y. H.; Zhu, C. Z. Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 2021, 84, 105817.

[125]

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

[126]

Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 September 2023
Revised: 20 September 2023
Accepted: 02 November 2023
Published: 07 December 2023
Issue date: May 2024

Copyright

© The author(s) 2023

Acknowledgements

Acknowledgements

A. A., G. H., S. H., A. L., and X. Y. J. thank the financial support from Kempe Foundation (SMK21-0011, SMK21-0020). A. L. acknowledges Swedish Research Council (2019-03865) and European Union’s Horizon Europe research and innovation program under grant agreement No. 101086667. X. Y. J. thanks the financial support from Horizon-EIC and Pathfinder challenges, Grant Number: 101070976.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return