Journal Home > Volume 17 , Issue 5

Carbon materials have shown significant potential as catalysts for lithium-oxygen batteries (LOBs). However, the intrinsic carbon sites are typically inert, necessitating extensive modifications and resulting in a limited density of active sites. Here we present C60 as a metal-free cathode catalyst for LOBs, using density functional theory calculations and experimental verifications. The lithiation reactions on the pristine carbon sites of C60 are energetically favorable due to its curved π-conjugation over the pentagon–hexagon networks. The kinetic analysis specifically reveals low energy barriers for Li2O2 decomposition and Li diffusion on C60. Consequently, C60 exhibits significantly higher catalytic activity than typical carbon materials such as graphene and carbon nanotubes. Our electrochemical measurements validate the predictions, notably demonstrating that the intrinsic activity of C60 is comparable to that of noble metals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

C60 as a metal-free catalyst for lithium-oxygen batteries

Show Author's information Xinxin Zhang1Jiaming Tian2Yu Wang1Shaohua Guo2Yafei Li1( )
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China

Abstract

Carbon materials have shown significant potential as catalysts for lithium-oxygen batteries (LOBs). However, the intrinsic carbon sites are typically inert, necessitating extensive modifications and resulting in a limited density of active sites. Here we present C60 as a metal-free cathode catalyst for LOBs, using density functional theory calculations and experimental verifications. The lithiation reactions on the pristine carbon sites of C60 are energetically favorable due to its curved π-conjugation over the pentagon–hexagon networks. The kinetic analysis specifically reveals low energy barriers for Li2O2 decomposition and Li diffusion on C60. Consequently, C60 exhibits significantly higher catalytic activity than typical carbon materials such as graphene and carbon nanotubes. Our electrochemical measurements validate the predictions, notably demonstrating that the intrinsic activity of C60 is comparable to that of noble metals.

Keywords: lithium-oxygen batteries, density functional theory (DFT) calculations, C60, metal-free cathode

References(50)

[1]

Sullivan, I.; Goryachev, A.; Digdaya, I. A.; Li, X. Q.; Atwater, H. A.; Vermaas, D. A.; Xiang, C. X. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2021, 4, 952–958.

[2]

Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407–5445.

[3]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[4]

Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.

[5]

Zhou, Y.; Gu, Q. F.; Yin, K.; Li, Y. J.; Tao, L.; Tan, H.; Yang, Y.; Guo, S. J. Engineering eg orbital occupancy of Pt with Au alloying enables reversible Li-O2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202201416.

[6]

Xia, H.; Xie, Q. F.; Tian, Y. H.; Chen, Q.; Wen, M.; Zhang, J. L.; Wang, Y.; Tang, Y. P.; Zhang, S. Q. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries. Nano Energy 2021, 84, 105877.

[7]

Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

[8]

Yoon, K. R.; Lee, G. Y.; Jung, J. W.; Kim, N. H.; Kim, S. O.; Kim, I. D. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries. Nano Lett. 2016, 16, 2076–2083.

[9]

Zhu, J. Z.; Ren, X. D.; Liu, J. J.; Zhang, W. Q.; Wen, Z. Y. Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li-O2 battery. ACS Catal. 2015, 5, 73–81.

[10]

Li, Q.; Xu, P.; Zhang, B.; Tsai, H.; Wang, J.; Wang, H. L.; Wu, G. One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries. Chem. Commun. 2013, 49, 10838–10840.

[11]

Han, X.; Zhao, L. L.; Wang, J.; Liang, Y. J.; Zhang, J. T. Delocalized electronic engineering of Ni5P4 nanoroses for durable Li-O2 batteries. Adv. Mater. 2023, 35, 2301897.

[12]

Ding, S. Q.; Wu, L.; Zhang, F.; Yuan, X. X. Modulating electronic structure with copper doping to promote the electrocatalytic performance of cobalt disulfide in Li-O2 batteries. Small 2023, 19, 2300602.

[13]

Zhou, Z. R.; Zhao, L. L.; Wang, J.; Zhang, Y. M.; Li, Y. B.; Shoukat, S.; Han, X.; Long, Y. X.; Liu, Y. Optimizing eg orbital occupancy of transition metal sulfides by building internal electric fields to adjust the adsorption of oxygenated intermediates for Li-O2 batteries. Small 2023, 19, 2302598.

[14]

Kim, J. G.; Kim, Y.; Noh, Y.; Lee, S.; Kim, Y.; Kim, W. B. Bifunctional hybrid catalysts with perovskite LaCo0.8Fe0.2O3 nanowires and reduced graphene oxide sheets for an efficient Li-O2 battery cathode. ACS Appl. Mater. Interfaces 2018, 10, 5429–5439.

[15]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[16]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[17]

Ma, S. Y.; Yao, H. C.; Li, Z. J.; Liu, Q. C. Tuning the nucleation and decomposition of Li2O2 by fluorine-doped carbon vesicles towards high performance Li-O2 batteries. J. Energy Chem. 2022, 70, 614–622.

[18]

Lu, X.; Chen, Z. F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chem. Rev. 2005, 105, 3643–3696.

[19]

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

[20]

Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites. Angew. Chem., Int. Ed. 2022, 61, e202116290.

[21]

Yi, X. P.; Liu, X. L.; Zhang, P.; Dou, R. F.; Wen, Z.; Zhou, W. N. Computational insights into Li x O y formation, nucleation, and adsorption on carbon nanotube electrodes in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2020, 11, 2195–2202.

[22]

Carter, R.; Oakes, L.; Cohn, A. P.; Holzgrafe, J.; Zarick, H. F.; Chatterjee, S.; Bardhan, R.; Pint, C. L. Solution assembled single-walled carbon nanotube foams: Superior performance in supercapacitors, lithium-ion, and lithium-air batteries. J. Phys. Chem. C 2014, 118, 20137–20151.

[23]

Ma, D. M.; Zhong, J. B.; Peng, R. F.; Li, J. Z.; Duan, R. Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl. Appl. Surf. Sci. 2019, 465, 249–258.

[24]

Gao, R.; Dai, Q. B.; Du, F.; Yan, D. P.; Dai, L. M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution. J. Am Chem. Soc. 2019, 141, 11658–11666.

[25]

Xiang, J. W.; Shen, W. Q.; Guo, Z. Z.; Meng, J. T.; Yuan, L. X.; Zhang, Y.; Cheng, Z. X.; Shen, Y.; Lu, X.; Huang, Y. H. A supramolecular complex of C60-S with high-density active sites as a cathode for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 14313–14318.

[26]

Li, Y. Z.; Xu, T. T.; Huang, Q.; Zhu, L. T.; Yan, Y. Y.; Peng, P.; Li, F. F. C60 fullerenol to stabilize and activate Ru nanoparticles for highly efficient hydrogen evolution reaction in alkaline media. ACS Catal. 2023, 13, 7597–7605

[27]

Hwang, C.; Yoo, J.; Jung, G. Y.; Joo, S. H.; Kim, J.; Cha, A. M.; Han, J. G.; Choi, N. S.; Kang, S. J.; Lee, S. Y. et al. Biomimetic superoxide disproportionation catalyst for anti-aging lithium-oxygen batteries. ACS Nano 2019, 13, 9190–9197.

[28]

Bharadwaj, N.; Nair, A. S.; Das, S.; Pathak, B. Size-dependent effects in fullerene-based catalysts for nonaqueous Li-air battery applications. ACS Appl. Energy Mater. 2022, 5, 3380–3391.

[29]

Zhang, R. G.; Mizuno, F.; Ling, C. Fullerenes: Non-transition metal clusters as rechargeable magnesium battery cathodes. Chem. Commun. 2015, 51, 1108–1111.

[30]

Shan, C. S.; Yen, H. J.; Wu, K. F.; Lin, Q. L.; Zhou, M.; Guo, X. F.; Wu, D.; Zhang, H. G.; Wu, G.; Wang, H. L. Functionalized fullerenes for highly efficient lithium ion storage: Structure–property–performance correlation with energy implications. Nano Energy 2017, 40, 327–335.

[31]

Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.

[32]

Zhang, R. L.; Li, Y. Z.; Zhou, X.; Yu, A.; Huang, Q.; Xu, T. T.; Zhu, L. T.; Peng, P.; Song, S. Y.; Echegoyen, L. et al. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nat. Commun. 2023, 14, 2460.

[33]

Oh, S. H.; Black, R.; Pomerantseva, E.; Lee, J. H.; Nazar, L. F. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem. 2012, 4, 1004–1010.

[34]

Yi, X. P.; Liu, X. L.; Pan, W. D.; Qin, B.; Fang, J.; Jiang, K.; Deng, S. G.; Meng, Y.; Leung, D. Y. C.; Wen, Z. Evolution of discharge products on carbon nanotube cathodes in Li-O2 batteries unraveled by molecular dynamics and density functional theory. ACS Catal. 2022, 12, 5048–5059.

[35]

Shang, C.; Liu, Z. P. Constrained broyden minimization combined with the dimer method for locating transition state of complex reactions. J. Chem. Theory Comput. 2010, 6, 1136–1144.

[36]

Zhang, X. J.; Shang, C.; Liu, Z. P. Double-ended surface walking method for pathway building and transition state location of complex reactions. J. Chem. Theory Comput. 2013, 9, 5745–5753.

[37]

Hummelshøj, J. S.; Luntz, A. C.; Nørskov, J. K. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 2013, 138, 034703.

[38]

Jia, C. Y.; Zhang, F.; Zhang, N.; Li, Q.; He, X. X.; Sun, J.; Jiang, R. B.; Lei, Z. B.; Liu, Z. H. Bifunctional photoassisted Li-O2 battery with ultrahigh rate-cycling performance based on siloxene size regulation. ACS Nano 2023, 17, 1713–1722.

[39]

Xu, W.; Xu, K.; Viswanathan, V. V.; Towne, S. A.; Hardy, J. S.; Xiao, J.; Nie, Z. M.; Hu, D. H.; Wang, D. Y.; Zhang, J. G. Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes. J. Power Sources 2011, 196, 9631–9639.

[40]

McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161–1166.

[41]

Liu, Z. X.; De Jesus, L. R.; Banerjee, S.; Mukherjee, P. P. Mechanistic evaluation of Li x O y formation on δ-MnO2 in nonaqueous Li-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 23028–23036.

[42]

Hou, B. P.; Lei, X. L.; Zhong, S. Y.; Sun, B. Z.; Ouyang, C. Y. Dissociation of (Li2O2)0,+ on graphene and boron-doped graphene: Insights from first-principles calculations. Phys. Chem. Chem. Phys. 2020, 22, 14216–14224.

[43]

Tan, G. Q.; Chong, L. N.; Zhan, C.; Wen, J. G.; Ma, L.; Yuan, Y. F.; Zeng, X. Q.; Guo, F. M.; Pearson, J. E.; Li, T. et al. Insights into structural evolution of lithium peroxides with reduced charge overpotential in Li-O2 system. Adv. Energy Mater. 2019, 9, 1900662.

[44]

Pollak, E.; Geng, B. S.; Jeon, K. J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 2010, 10, 3386–3388.

[45]

Wang, X. X.; Chi, X. W.; Li, M. L.; Guan, D. H.; Miao, C. L.; Xu, J. J. Metal-organic frameworks derived electrolytes build multiple wetting interfaces for integrated solid-state lithium-oxygen battery. Adv. Funct. Mater. 2022, 32, 2113235.

[46]

Wen, Y. X.; Ding, S. J.; Ma, C. C.; Jia, P.; Tu, W.; Guo, Y. N.; Guo, S.; Zhou, W.; Zhang, X. Q.; Huang, J. Y. et al. In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries. Nano Res. 2023, 16, 6833–6839

[47]

Zhou, Y.; Yin, K.; Gu, Q, F.; Tao, L.; Li, Y, J.; Tan, H.; Zhou, J, H.; Zhang, W, S.; Li, H, B.; Guo, S, J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 26592–26598.

[48]

Lyu, Z. Y.; Zhou, Y.; Dai, W. R.; Cui, X. H.; Lai, M.; Wang, L.; Huo, F. W.; Huang, W.; Hu, Z.; Chen, W. Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.

[49]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[50]

Hou, L. X.; Cui, X. P.; Guan, B.; Wang, S. Z.; Li, R. A.; Liu, Y. Q.; Zhu, D. B.; Zheng, J. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507–510.

File
12274_2023_6306_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 September 2023
Revised: 20 October 2023
Accepted: 01 November 2023
Published: 01 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors are grateful for funding supports from the National Key R&D Program of China (No. 2019YFA0308000), the National Natural Science Foundation of China (No. 21873050), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Return