Journal Home > Volume 17 , Issue 5

Efficient, durable and economic electrocatalysts are crucial for commercializing water electrolysis technology. Herein, we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide (NiFe-LDH) nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional (3D) architecture, which exhibits exceptional performances for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In overall water splitting, only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm−2, and the continuous water splitting at an industrial-level current density of 500 mA·cm−2 shows a negligible degradation (1.8%) of the cell voltage over 1000 h. The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture. Specifically, the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH diffusion and enlarge the electrochemically active surface area on anode, while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes. This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER- and OER-active components.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities

Show Author's information Yan Zhang1Biao Feng1MingLei Yan2Zhen Shen1Yiqun Chen1Jingyi Tian1Fengfei Xu1Guanghai Chen1Xizhang Wang1Lijun Yang1Qiang Wu1( )Zheng Hu1( )
Key Laboratory of Mesoscopic Chemistry of Ministry of Education (MOE) and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya’an 625014, China

Abstract

Efficient, durable and economic electrocatalysts are crucial for commercializing water electrolysis technology. Herein, we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide (NiFe-LDH) nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional (3D) architecture, which exhibits exceptional performances for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In overall water splitting, only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm−2, and the continuous water splitting at an industrial-level current density of 500 mA·cm−2 shows a negligible degradation (1.8%) of the cell voltage over 1000 h. The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture. Specifically, the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH diffusion and enlarge the electrochemically active surface area on anode, while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes. This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER- and OER-active components.

Keywords: layered double hydroxides, bifunctional electrocatalysts, alkaline water splitting, high durability, industrial current densities

References(51)

[1]

Yang, H. Y.; Driess, M.; Menezes, P. W. Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.

[2]

Li, X.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Zhang, X. L.; Liu, H.; Zhou, W. J. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131.

[3]

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

[4]

Xu, Q. C.; Zhang, J. H.; Zhang, H. X.; Zhang, L. Y.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 2021, 14, 5228–5259.

[5]

Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

[6]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[7]

Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high‐efficient bifunctional electrocatalyst for a solar‐to‐hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.

[8]

Gao, F.; Zhang, Y. P.; Wu, Z. Y.; You, H. M.; Du, Y. K. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord. Chem. Rev. 2021, 436, 213825.

[9]

Liu, J. W.; Yang, X. Q.; Si, F. Z.; Zhao, B.; Xi, X. A.; Wang, L.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy 2022, 103, 107753.

[10]

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

[11]

Zhao, Y.; Wei, S. Z.; Pan, K. M.; Dong, Z. L.; Zhang, B.; Wu, H. H.; Zhang, Q. B.; Lin, J. P.; Pang, H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem. Eng. J. 2021, 421, 129645.

[12]

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3− x Fe x )FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334

[13]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe,Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[14]

Xu, S. R.; Yu, X.; Luo, L.; Li, W. J.; Du, Y. S.; Kong, Q. Q.; Wu, Q. Multiscale manipulating induced flexible heterogeneous V-NiFe2O4@Ni2P electrocatalyst for efficient and durable oxygen evolution reaction. Nano Res. 2022, 15, 4942–4949.

[15]

Zhao, G. Q.; Rui, K.; Dou, S. X.; Sun, W. P. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv. Funct. Mater. 2018, 28, 1803291.

[16]

Yu, M. Q.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202103824.

[17]

Chandrasekaran, S.; Khandelwal, M.; Dayong, F.; Sui, L.; Chung, J. S.; Misra, R. D. K.; Yin, P.; Kim, E. J.; Kim, W.; Vanchiappan, A. et al. Developments and perspectives on robust nano‐ and microstructured binder‐free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 2022, 12, 2200409.

[18]

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

[19]

Li, W. J.; Deng, Y. Q.; Luo, L.; Du, Y. S.; Cheng, X. H.; Wu, Q. Nitrogen-doped Fe2O3/NiTe2 as an excellent bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 416–423.

[20]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[21]

Ito, Y.; Ohto, T.; Hojo, D.; Wakisaka, M.; Nagata, Y.; Chen, L. H.; Hu, K. L.; Izumi, M.; Fujita, J. I.; Adschiri, T. Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catal. 2018, 8, 3579–3586.

[22]

Jiang, P.; Yang, Y.; Shi, R. H.; Xia, G. L.; Chen, J. T.; Su, J. W.; Chen, Q. W. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 5475–5485.

[23]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[24]

Zhai, P. L.; Wang, C.; Zhao, Y. Y.; Zhang, Y. X.; Gao, J. F.; Sun, L. C.; Hou, J. G. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.

[25]

Shin, H.; Xiao, H.; Goddard III, W. A . In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1− x Fe x OOH) catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 6745–6748.

[26]

Xiang, Q.; Wang, J.; Miao, Q.; Tao, P.; Song, C.; Shang, W.; Deng, T.; Yin, Z.; Wu, J. Recent progress in self-supported nanoarrays with diverse substrates for water splitting and beyond. Mater. Today Nano 2021, 15, 100120.

[27]

Huang, C.; Chu, P. K. Recommended practices and benchmarking of foam electrodes in water splitting. Trends Chem. 2022, 4, 1065–1077.

[28]

Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.

[29]

Meng, X.; Li, Z. Q.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B.; Cheng, H. F.; He, J. H. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano Energy 2023, 109, 108296.

[30]

Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2021, 14, 20.

[31]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3− x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[32]

Lv, J. J.; Wang, L. M.; Li, R. S.; Zhang, K. Y.; Zhao, D. F.; Li, Y. Q.; Li, X. J.; Huang, X. B.; Wang, G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction. ACS Catal. 2021, 11, 14338–14351.

[33]

Wang, B. R.; Jiao, S. H.; Wang, Z. S.; Lu, M. J.; Chen, D.; Kang, Y. T.; Pang, G. S.; Feng, S. H. Rational design of NiFe LDH@Ni3N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2020, 8, 17202–17211.

[34]

Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B: Environ. 2021, 286, 119869.

[35]

Luo, M.; Yang, J. T.; Li, X. G.; Eguchi, M.; Yamauchi, Y.; Wang, Z. L. Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 2023, 14, 3400–3414.

[36]

Lu, X. Y.; Cai, M. M.; Zou, Z. H.; Huang, J. F.; Xu, C. L. A novel MoNi@Ni(OH)2 heterostructure with Pt-like and stable electrocatalytic activity for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 1729–1732.

[37]

Faid, A. Y.; Barnett, A. O.; Seland, F.; Sunde, S. Tuning Ni-MoO2 catalyst-ionomer and electrolyte interaction for water electrolyzers with anion exchange membranes. ACS Appl. Energy Mater. 2021, 4, 3327–3340.

[38]

Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.

[39]

Qin, F.; Zhao, Z. H.; Alam, M. K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.

[40]

Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.

[41]

Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.

[42]

Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Sun, L. C.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

[43]

Shi, W. J.; Zhu, J. W.; Gong, L.; Feng, D.; Ma, Q. L.; Yu, J.; Tang, H. L.; Zhao, Y. F.; Mu, S. C. Fe-incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media. Small 2022, 18, 2205683.

[44]

Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice‐matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

[45]

Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.

[46]

Li, Y. K.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous Ni-Fe-Mo suboxides coupled with ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034.

[47]

Ma, H. B.; Chen, Z. W.; Wang, Z. L.; Singh, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, 2105313.

[48]

Zhang, Z. H.; Liu, X. H.; Wang, D.; Wan, H.; Zhang, Y.; Chen, G.; Zhang, N.; Ma, R. Z. Ruthenium composited NiCo2O4 spinel nanocones with oxygen vacancies as a high-efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2022, 446, 137037.

[49]

Chen, Y. K.; Wang, Y. J.; Yu, J. Y.; Xiong, G. W.; Niu, H. S.; Li, Y.; Sun, D. H.; Zhang, X. L.; Liu, H.; Zhou, W. J. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting. Adv. Sci. 2022, 9, 2105869.

[50]

Su, H.; Jiang, J.; Li, N.; Gao, Y. Q.; Ge, L. NiCu alloys anchored defect-rich NiFe layered double-hydroxides as efficient electrocatalysts for overall water splitting. Chem. Eng. J. 2022, 446, 137226.

[51]

Hu, Y.; Luo, Z. Y.; Guo, M.; Dong, J. X.; Yan, P. X.; Hu, C.; Isimjan, T. T.; Yang, X. L. Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell. Chem. Eng. J. 2022, 435, 134795.

File
12274_2023_6303_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 August 2023
Revised: 16 October 2023
Accepted: 30 November 2023
Published: 12 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was jointly supported by the National Key Research and Development Program of China (No. 2021YFA1500900), the National Natural Science Foundation of China (Nos. 52071174, 21832003, and 21972061), the Natural Science Foundation of Jiangsu Province, Major Project (No. BK20212005), and the Foundation of Science and Technology of Suzhou (No. SYC2022102).

Return