Journal Home > Volume 17 , Issue 5

Emerging two-dimensional (2D) layered metal carbide and nitride materials, commonly termed MXenes, are increasingly recognized for their applications across diverse fields such as energy, environment, and catalysis. In the past few years, MXenes/carbon nanotubes (CNTs)-based hybrids have attracted extensive attention as an important catalyst in energy and environmental fields, due to their superior multifunctions and mechanical stability. This review aims to address the fabrication strategies, the identification of the enhancement mechanisms, and recent progress regarding the design and modification of MXenes/CNTs-based hybrids. A myriad of fabrication techniques have been systematically summarized, including mechanical mixing, spray drying, three-dimensional (3D) printing, self-assembly/in-situ growth, freeze drying, templating, hydrothermal methods, chemical vapor deposition (CVD), and rolling. Importantly, the identification of the enhancement mechanisms was thoroughly discussed from the two dimensions of theoretical simulations and in-situ analysis. Moreover, the recent advancements in profound applications of MXenes/CNTs-based hybrids have also been carefully revealed, including energy storage devices, sensors, water purification systems, and microwave absorption. We also underscore anticipated challenges related to their fabrication, structure, underlying mechanisms, modification approaches, and emergent applications. Consequently, this review offers insights into prospective directions and the future trajectory for these promising hybrids. It is expected that this review can inspire new ideas or provide new research methods for future studies.


menu
Abstract
Full text
Outline
About this article

MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications

Show Author's information Jizhou Jiang1( )Fangyi Li1Lei Ding1Chengxun Zhang1Arramel 2Xin Li3( )
School of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, China
Nano Center Indonesia, Jl. PUSPIPTEK Tangerang Selatan, Banten 15314, Indonesia
Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China

Abstract

Emerging two-dimensional (2D) layered metal carbide and nitride materials, commonly termed MXenes, are increasingly recognized for their applications across diverse fields such as energy, environment, and catalysis. In the past few years, MXenes/carbon nanotubes (CNTs)-based hybrids have attracted extensive attention as an important catalyst in energy and environmental fields, due to their superior multifunctions and mechanical stability. This review aims to address the fabrication strategies, the identification of the enhancement mechanisms, and recent progress regarding the design and modification of MXenes/CNTs-based hybrids. A myriad of fabrication techniques have been systematically summarized, including mechanical mixing, spray drying, three-dimensional (3D) printing, self-assembly/in-situ growth, freeze drying, templating, hydrothermal methods, chemical vapor deposition (CVD), and rolling. Importantly, the identification of the enhancement mechanisms was thoroughly discussed from the two dimensions of theoretical simulations and in-situ analysis. Moreover, the recent advancements in profound applications of MXenes/CNTs-based hybrids have also been carefully revealed, including energy storage devices, sensors, water purification systems, and microwave absorption. We also underscore anticipated challenges related to their fabrication, structure, underlying mechanisms, modification approaches, and emergent applications. Consequently, this review offers insights into prospective directions and the future trajectory for these promising hybrids. It is expected that this review can inspire new ideas or provide new research methods for future studies.

Keywords: fabrication, applications, modification strategies, MXenes/carbon nanotubes (CNTs)-based hybrids

References(136)

[1]

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

[2]

Wang, L. L.; Yang, T.; Peng, L. J.; Zhang, Q. Q.; She, X. L.; Tang, H.; Liu, Q. Q. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chin. J. Catal. 2022, 43, 2720–2731.

[3]

Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Shen Wee, A. T.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

[4]

Xiang, X.; Zhu, Y.; Gao, C. Q.; Du, H.; Guo, C. W. Study on the structure of reduced graphene oxide prepared by different reduction methods. Carbon Lett. 2022, 32, 557–566.

[5]

Wang, H. T.; Jiang, J. Z.; Yu, L. L.; Peng, J. H.; Song, Z.; Xiong, Z. G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J. P. et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small 2023, 19, 2301116.

[6]

Wang, Y. Q.; Zhang, M. C.; Xu, W.; Shen, X. Y.; Gao, F.; Zhu, J. L.; Wan, X.; Lian, X. J.; Xu, J. G.; Tong, Y. Chemical preparation of new Ti3C2 MXene and the performance and mechanism of memristor based on MXene. Acta Phys. Chim. Sin. 2022, 38, 1907076.

[7]

Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025–2201033.

[8]

Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

[9]

Jiang, J. Z.; Ou-Yang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

[10]

Cheng, S.; Xiong, Q. Q.; Zhao, C. X.; Yang, X. F. Synergism of 1D CdS/2D modified Ti3C2T x MXene heterojunctions for boosted photocatalytic hydrogen production. Chin. J. Struct. Chem. 2022, 41, 2208058–2208064.

[11]

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

[12]

Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin. J. Catal. 2022, 43, 359–369.

[13]

Cao, X. H.; Hou, C. Y.; Li, Y. G.; Li, K. R.; Zhang, Q. H.; Wang, H. Z. MXenes-based functional fibers and their applications in the intelligent wearable field. Acta Phys. Chim. Sin. 2022, 38, 2204058.

[14]

Manjushree, S. G.; Adarakatti, P. S.; Udayakumar, V.; Almalki, A. S. A. Hexagonal cerium oxide decorated on β-Ni(OH)2 nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2. Carbon Lett. 2022, 32, 591–604.

[15]

Wang, J. M.; Jiang, J. Z.; Li, F. Y.; Zou, J.; Xiang, K.; Wang, H. T.; Li, Y. J.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58.

[16]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[17]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[18]

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, N.; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

[19]

Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

[20]

Yan, X. S.; Deng, D. J.; Wu, S. Q.; Li, H. N.; Xu, L. Development of transition metal nitrides as oxygen and hydrogen electrocatalysts. Chin. J. Struct. Chem. 2022, 41, 2207004–2207015.

[21]

Gao, Y. J.; Zhang, S. J.; Sun, X.; Zhao, W.; Zhuo, H.; Zhuang, G. L.; Wang, S. B.; Yao, Z. H.; Deng, S. W.; Zhong, X. et al. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chin. J. Catal. 2022, 43, 1860–1869.

[22]

Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.

[23]

Guan, C.; Yue, X. Y.; Fan, J. J.; Xiang, Q. J. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chin. J. Catal. 2022, 43, 2484–2499.

[24]

Peng, J. H.; Wang, X.; Wang, Z.; Liu, B.; Zhang, P.; Li, X.; Li, N. Uncovering the mechanism for urea electrochemical synthesis by coupling N2 and CO2 on Mo2C-MXene. Chin. J. Struct. Chem. 2022, 41, 2209094–2209104.

[25]

Zeng, Z. L.; Chen, X. Z.; Weng, K. Y.; Wu, Y.; Zhang, P.; Jiang, J. Z.; Li, N. Computational screening study of double transition metal carbonitrides M′2M″CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 2021, 7, 80.

[26]

Li, B.; Wu, Y.; Li, N.; Chen, X. Z.; Zeng, X. B.; Arramel, N.; Zhao, X. J.; Jiang, J. Z. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 9261–9267.

[27]

Ding, B.; Ong, W. J.; Jiang, J. Z.; Chen, X. Z.; Li, N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 2020, 500, 143987.

[28]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[29]

Huang, H. Y.; Jiang, R. M.; Feng, Y. L.; Ouyang, H.; Zhou, N. G.; Zhang, X. Y.; Wei, Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325–1338.

[30]

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

[31]

Jiang, J. Z.; Li, F. Y.; Zou, J.; Liu, S.; Wang, J. M.; Zou, Y. L.; Xiang, K.; Zhang, H.; Zhu, G. Y.; Zhang, Y. Z. et al. Three-dimensional MXenes heterostructures and their applications. Sci. China Mater. 2022, 65, 2895–2910.

[32]

Li, F. Y.; Jiang, J. Z.; Wang, J. M.; Zou, J.; Sun, W.; Wang, H. T.; Xiang, K.; Wu, P. X.; Hsu, J. P. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Res. 2023, 16, 127–145.

[33]

Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.

[34]

Zhang, Z. Y.; Yao, Y. X.; Li, Y. Modulating the diameter of bulk single-walled carbon nanotubes grown by FeCo/MgO catalyst. Acta Phys. Chim. Sin. 2022, 38, 2101055.

[35]

Hu, C.; Shi, Q.; Yang, X.; Wu, T.; Pu, Z. H. Adsorption and sensing characteristics of air decomposed species onto pyridine-like PdN3-doped CNT: A first-principles study. Carbon Lett. 2022, 32, 109–117.

[36]

Shen, X. F.; Wang, X. N.; Yu, N. S.; Yang, W.; Zhou, Y. R.; Shi, Y. H.; Wang, Y. L.; Dong, L. Z.; Di, J. T.; Li, Q. W. A polypyrrole-coated MnO2/carbon nanotube film cathode for rechargeable aqueous Zn-ion batteries. Acta Phys. Chim. Sin. 2022, 38, 2006059.

[37]

Singh, Y. T.; Patra, P. K.; Obodo, K. O.; Rai, D. P. Electronic and mechanical properties of (6,1) single-walled carbon nanotubes with different tube diameters: A theoretical study. Carbon Lett. 2022, 32, 451–460.

[38]

Li, Z. Y.; Huai, L. Y.; Hao, P. P.; Zhao, X.; Wang, Y. Z.; Zhang, B. S.; Chen, C. L.; Zhang, J. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts. Chin. J. Catal. 2022, 43, 793–801.

[39]

Wu, K. J.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Phys. Chim. Sin. 2022, 38, 2106034.

[40]

Yi, Y.; Wang, B.; Liu, X. Y.; Li, C. P. Flexible piezoresistive strain sensor based on CNTs-polymer composites: A brief review. Carbon Lett. 2022, 32, 713–726.

[41]

Wang, C. Y.; Yao, Q. Q.; Gan, Y. M.; Zhang, Q. X.; Guan, L. H.; Zhao, Y. Monodispersed SWNTs assembled coating layer as an alternative to graphene with enhanced alkali-ion storage performance. Chin. J. Struct. Chem. 2022, 41, 2201040–2201046.

[42]

Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H. H.; Yu, Z. Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890.

[43]

Yu, L. P.; Zhou, X. H.; Lu, L.; Xu, L.; Wang, F. J. MXene/carbon nanotube hybrids: Synthesis, structures, properties, and applications. ChemSusChem 2021, 14, 5079–5111.

[44]

Yang, Z. P.; Li, H. Q.; Zhang, S. F.; Lai, X. J.; Zeng, X. R. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021, 425, 130462.

[45]

Zhao, J. X.; Zhang, Y.; Huang, Y. N.; Zhao, X. X.; Shi, Y. H.; Qu, J. Y.; Yang, C. F.; Xie, J. X.; Wang, J. J.; Li, L. L. et al. Duplex printing of all-in-one integrated electronic devices for temperature monitoring. J. Mater. Chem. A 2019, 7, 972–978.

[46]

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

[47]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[48]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[49]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[50]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[51]

Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem. 2018, 130, 505–509.

[52]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[53]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[54]

Ding, M. M.; Xu, H.; Chen, W.; Kong, Q.; Lin, T.; Tao, H.; Zhang, K.; Liu, Q.; Zhang, K. S.; Xie, Z. L. Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation. J. Mater. Chem. A 2020, 8, 22666–22673.

[55]

Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

[56]

Cui, Y. H.; Wu, F.; Wang, J. Q.; Wang, Y. B.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A: Appl. Sci. Manuf. 2021, 145, 106378.

[57]
Wang, Z. X.; Huang, Z. X.; Wang, H.; Li, W. D.; Wang, B. Y.; Xu, J. M.; Xu, T. T.; Zang, J. H.; Kong, D. Z.; Li, X. J. et al. 3D-printed sodiophilic V2CT x/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022 , 16, 9105–9116.
[58]

Cui, Y. H.; Yang, K.; Zhang, F. R.; Lyu, Y.; Zhang, Q. Y.; Zhang, B. L. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion. Compos. Part A: Appl. Sci. Manuf. 2022, 158, 106986.

[59]

Zhang, B.; Luo, C.; Zhou, G. M.; Pan, Z. Z.; Ma, J. B.; Nishihara, H.; He, Y. B.; Kang, F. Y.; Lv, W.; Yang, Q. H. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 2021, 31, 2100793.

[60]

Wei, S. C.; Fu, Y.; Liu, M. M.; Yue, H. Y.; Park, S.; Lee, Y. H.; Li, H. M.; Yao, F. Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. npj 2D Mater. Appl. 2022, 6, 25.

[61]

Wang, Z. Y.; Qin, S.; Seyedin, S.; Zhang, J. Z.; Wang, J. T.; Levitt, A.; Li, N.; Haines, C.; Ovalle-Robles, R.; Lei, W. W. et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018, 14, 1802225.

[62]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[63]

Kaner, R. B.; Kouvetakis, J.; Warble, C. E.; Sattler, M. L.; Bartlett, N. Boron-carbon-nitrogen materials of graphite-like structure. Mater. Res. Bull. 1987, 22, 399–404.

[64]

Rickard, D.; Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562.

[65]

Zhang, Y. W.; Chen, X. Z.; Arramel, N.; Augustine, K. B.; Zhang, P.; Jiang, J. Z.; Wu, Q.; Li, N. Atomic-scale superlubricity in Ti2CO2@MoS2 layered heterojunctions interface: A first principles calculation study. ACS Omega 2021, 6, 9013–9019.

[66]

Jiang, J. Z.; Li, F. Y.; Bai, S. S.; Wang, Y. J.; Xiang, K.; Wang, H. T.; Zou, J.; Hsu, J. P. Carbonitride MXene Ti3CN(OH) x @MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 2023, 16, 4656–4663.

[67]

Li, F. Y.; Anjarsari, Y.; Wang, J. M.; Azzahiidah, R.; Jiang, J. Z.; Zou, J.; Xiang, K.; Ma, H. J.; Arramel. Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. 2023, 33, 1321–1331.

[68]

Jin, S.; Wu, J. B.; Jiang, J. Z.; Wang, R. G.; Zhou, B. X.; Wang, L. B.; Hu, Q. K.; Zhou, A. G. Boosting photocatalytic performance of Cd x Zn1− x S for H2 production by Mo2C MXene with large interlayer distance. J. Mater. Chem. A 2023, 11, 5851–5863.

[69]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[70]

Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

[71]

Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

[72]

Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

[73]

Ding, H. M.; Li, Y. B.; Li, M.; Chen, K.; Liang, K.; Chen, G. X.; Lu, J.; Palisaitis, J.; Persson, P. O. Å.; Eklund, P. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135.

[74]

Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

[75]

Wang, J. M.; Qin, Q.; Li, F. Y.; Anjarsari, Y.; Sun, W.; Azzahiidah, R.; Zou, J.; Xiang, K.; Ma, H. J.; Jiang, J. Z. et al. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. 2023, 33, 1381–1394.

[76]

Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Xiang, K.; Wu, P. X.; Zou, J. Anchoring Pt nanoparticles and Ti3C2T x MXene nanosheets on CdS nanospheres as efficient synergistic photocatalysts for hydrogen evolution. Sci. China Technol. Sci. 2022, 65, 3020–3028.

[77]

Jiang, J. Z.; Zou, Y. L.; Arramel, N.; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

[78]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

[79]

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

[80]

Wang, C. D.; Shou, H. W.; Chen, S. M.; Wei, S. Q.; Lin, Y. X.; Zhang, P. J.; Liu, Z. F.; Zhu, K. F.; Guo, X.; Wu, X. J. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 2021, 33, 2101015.

[81]

Nessim, G. D. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2010, 2, 1306–1323.

[82]
Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M. W. 2D Ti3C2T z MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020 , 6, 616–630.
[83]

Sun, W.; Shah, S. A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. J. Electrochemical etching of Ti2AlC to Ti2CT x (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668.

[84]

Liu, L. Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P. Exfoliation and delamination of Ti3C2T x MXene prepared via molten salt etching route. ACS Nano 2022, 16, 111–118.

[85]

Overbury, S. H.; Kolesnikov, A. I.; Brown, G. M.; Zhang, Z. Y.; Nair, G. S.; Sacci, R. L.; Lotfi, R.; Van Duin, A. C. T.; Naguib, M. Complexity of intercalation in MXenes: Destabilization of urea by two-dimensional titanium carbide. J. Am. Chem. Soc. 2018, 140, 10305–10314.

[86]

Iakunkov, A.; Nordenström, A.; Boulanger, N.; Hennig, C.; Baburind, I.; Talyzin, A. V. Temperature-dependent swelling transitions in MXene Ti3C2T x . Nanoscale 2022, 14, 10940–10949.

[87]

Naguib, M.; Unocic, R. R.; Armstrong, B. L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44, 9353–9358.

[88]

Wang, D.; Zhou, C. K.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M. Z.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247.

[89]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[90]

Ji, L. L.; Chen, W.; Bi, J.; Zheng, S. R.; Xu, Z. Y.; Zhu, D. Q.; Alvarez, P. J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719.

[91]

Ando, Y.; Zhao, X. L. Synthesis of carbon nanotubes by arc-discharge method. New Diamond Front. Carbon Technol. 2006, 16, 123–137.

[92]

Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 2001, 72, 573–580.

[93]

Hou, P. X.; Zhang, F.; Zhang, L. L.; Liu, C.; Cheng, H. M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater. 2022, 32, 2108541.

[94]

Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346–349.

[95]

Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A.; Bianco, K. Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2007, 2, 38–43.

[96]

Wu, M.; Kim, D. Y.; Park, H.; Cho, K. M.; Kim, J. Y.; Kim, S. J.; Choi, S.; Kang, Y. K.; Kim, J.; Jung, H. T. Formation of toroidal Li2O2 in non-aqueous Li-O2 batteries with Mo2CT x MXene/CNT composite. RSC Adv. 2019, 9, 41120–41125.

[97]

Yang, K.; Luo, M.; Zhang, D. T.; Liu, C. Z.; Li, Z.; Wang, L. C.; Chen, W. M.; Zhou, X. Y. Ti3C2T x /carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 2022, 427, 132002.

[98]

Chen, J.; Chen, Y.; Li, S. Y.; Yang, J.; Dong, J. B.; Lu, X. Q. MXene/CNTs/Cu-MOF electrochemical probe for detecting tyrosine. Carbon 2022, 199, 110–118.

[99]

Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; Van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345.

[100]

Gao, X.; Du, X.; Mathis, T. S.; Zhang, M. M.; Wang, X. H.; Shui, J. L.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160.

[101]

He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

[102]

Lee, J. Y.; An, J.; Chua, C. K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133.

[103]

Li, H.; Chen, R.; Ali, M.; Lee, H.; Ko, M. J. In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors. Adv. Funct. Mater. 2020, 30, 2002739.

[104]

Su, F. Y.; Li, Y. C.; Deng, W. L.; Zhang, X.; Zhao, Z. Q.; Yan, W. F.; Zhang, L. L.; Bai, C. Y.; Zhang, X. H.; Zheng, T. et al. Layer-by-layer macroassembly of inorganic CNTs and MXenes with organic PVA for enhancing the interfacial properties of carbon fiber/epoxy composites. Compos. Commun. 2023, 37, 101427.

[105]

Ma, X.; Tu, X. L.; Gao, F.; Xie, Y.; Huang, X. G.; Fernandez, C.; Qu, F. L.; Liu, G. B.; Lu, L. M.; Yu, Y. F. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens. Actuators B: Chem. 2020, 309, 127815.

[106]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157

[107]

Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

[108]

Wang, X.; Luo, D.; Wang, J. Y.; Sun, Z. H.; Cui, G. L.; Chen, Y. X.; Wang, T.; Zheng, L. R.; Zhao, Y.; Shui, L. L. et al. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem., Int. Ed. 2021, 60, 2371–2378.

[109]

Xiong, C.; Zhu, G. Y.; Jiang, H. R.; Chen, Q.; Zhao, T. S. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 147–157.

[110]

Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries. Small 2021, 17, 2007446.

[111]

Ostwald, W. Studien über die bildung und umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.

[112]

Thirumal, V.; Yuvakkumar, R.; Kumar, P. S.; Ravi, G.; Keerthana, S. P.; Velauthapillai, D. Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere 2022, 286, 131733.

[113]

Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068–4074.

[114]

Yu, C. Y.; Gong, Y. J.; Chen, R. Y.; Zhang, M. Y.; Zhou, J. Y.; An, J. N.; Lv, F.; Guo, S. J.; Sun, G. Z. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 2018, 14, 1801203.

[115]

Lima, M. D.; Fang, S. L.; Lepró, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M. E.; Oh, J.; Rawat, N. et al. Biscrolling nanotube sheets and functional guests into yarns. Science 2011, 331, 51–55.

[116]

Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.

[117]

Hu, M. M.; Cui, C.; Shi, C.; Wu, Z. S.; Yang, J. X.; Cheng, R. F.; Guang, T. J.; Wang, H. L.; Lu, H. X.; Wang, X. H. High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2T x MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 2019, 13, 6899–6905.

[118]

Xu, C. X.; Fan, C. C.; Zhang, X. L.; Chen, H. T.; Liu, X. T.; Fu, Z. M.; Wang, R. R.; Hong, T.; Cheng, J. G. MXene (Ti3C2T x ) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl. Mater. Interfaces 2020, 12, 19539–19546.

[119]

Wang, H.; He, S. A.; Cui, Z.; Xu, C. T.; Zhu, J. Q.; Liu, Q.; He, G. J.; Luo, W.; Zou, R. J. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 2021, 420, 129693.

[120]

Zhang, S. X.; Liu, H.; Cao, B.; Zhu, Q. Z.; Zhang, P.; Zhang, X.; Chen, R. J.; Wu, F.; Xu, B. An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. J. Mater. Chem. A 2019, 7, 21766–21773.

[121]

Li, R. S.; Ding, L.; Gao, Q.; Zhang, H. M.; Zeng, D.; Zhao, B.; Fan, B. B.; Zhang, R. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 2021, 415, 128930.

[122]

Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W. H.; Wu, D. L.; Zuo, S. W.; Zhang, J.; Chen, B.; Dai, Z. W. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2008033.

[123]

Wang, X.; Wang, S. G.; Qin, J. W.; Xie, X.; Yang, R.; Cao, M. H. Constructing conductive bridge arrays between Ti3C2T x MXene nanosheets for high-performance lithium-ion batteries and highly efficient hydrogen evolution. Inorg. Chem. 2019, 58, 16524–16536.

[124]

Dong, H.; Sun, J. C.; Liu, X. M.; Jiang, X. D.; Lu, S. W. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516.

[125]

He, F. Y.; Tang, C.; Liu, Y. D.; Li, H. T.; Du, A. J.; Zhang, H. J. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene Quaternary composite with the superior rate performance for sodium-ion batteries. J. Mater. Sci. Technol. 2022, 100, 101–109.

[126]

Wang, R. C.; Luo, S. H.; Xiao, C.; Chen, Z. Y.; Li, H. S.; Asif, M.; Chan, V.; Liao, K.; Sun, Y. M. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochim. Acta 2021, 386, 138420.

[127]

Liu, Q.; Yang, J. J.; Luo, X. G.; Miao, Y. F.; Zhang, Y.; Xu, W. T.; Yang, L. J.; Liang, Y. X.; Weng, W.; Zhu, M. F. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram. Int. 2020, 46, 11874–11881.

[128]

Sun, Y. Q.; Xu, D. A.; Li, S. L.; Cui, L. L.; Zhuang, Y. X.; Xing, W. H.; Jing, W. H. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J. Membr. Sci. 2021, 623, 119075.

[129]

Wang, Y. L.; Qin, W. J.; Hu, X. Y.; Liu, Z. S.; Ren, Z. X.; Cao, H. Q.; An, B. G.; Zhou, X.; Shafiq, M.; Yin, S. G. et al. Hierarchically buckled Ti3C2T x MXene/carbon nanotubes strain sensor with improved linearity, sensitivity, and strain range for soft robotics and epidermal monitoring. Sens. Actuators B: Chem. 2022, 368, 132228.

[130]

Cui, C.; Cheng, R. F.; Zhang, H.; Zhang, C.; Ma, Y. H.; Shi, C.; Fan, B. B.; Wang, H. L.; Wang, X. H. Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000693.

[131]

Zhang, L. P.; Zhao, X. C.; Chu, Z. Y.; Wang, Q.; Cao, Y.; Li, J.; Lei, W.; Cao, J.; Si, W. M. Construction of Co-decorated 3D nitrogen doped-carbon nanotube/Ti3C2T x -MXene as efficient hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2023, 48, 15053–15064.

[132]
Zhang, C.; Dong, H. F.; Chen, B. L.; Jin, T. X.; Nie, J.; Ma, G. P. 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn-air batteries. Carbon 2021 , 185, 17–26.
[133]

Parse, H. B.; Patil, I.; Swami, A.; Kakade, B. An adept approach to convert titanium carbide to titanium nitride and it’s composite with N-doped carbon nanotubes for efficient oxygen electroreduction kinetics. Catal. Today 2021, 370, 46–54.

[134]

Wang, J. L.; Zhang, Z.; Yan, X. F.; Zhang, S. L.; Wu, Z. H.; Zhuang, Z. H.; Han, W. Q. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett. 2020, 12, 4.

[135]

Chen, M. M.; Hu, X. Y.; Li, K.; Sun, J. K.; Liu, Z. J.; An, B. G.; Zhou, X.; Liu, Z. F. Self-assembly of dendritic-lamellar MXene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 2020, 164, 111–120.

[136]
Luo, G. X.; Zhang, Q. K.; Luo, Y. Y.; Chen, K.; Zhou, W. K.; Zhao, L. B.; Jiang, Z. D. A wearable strain sensor based on fiber-structured PU/MXene/CNT composite with ultra-high sensitivity and broad sensing range. In 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp 1362–1365.
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 September 2023
Revised: 28 October 2023
Accepted: 30 October 2023
Published: 07 December 2023
Issue date: May 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62004143) and the Key R&D Program of Hubei Province (No. 2022BAA084).

Return